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Fuel  beneath  an  aqueous  firefight-
ing foam  increases  the  rate  of  foam
degradation.
Iso-octane  degrades  foams  faster
than methylcyclohexane.
Fuel  enhances  bubble  coalescence  at
the  interface  increasing  foam  degra-
dation.
Fluorinated  foams  degrade  slower
than foams  with  only  hydrocarbon
surfactants.
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a  b  s  t r  a  c  t

We performed  experiments  to  quantify  fuel-induced  foam  degradation  by applying  foams  onto  liquid
fuels  and  water  (for  comparison)  and  measuring  foam  thickness  over  time.  Our investigation  included
two  firefighting  foams,  one  fluorine-free  (RF6-ICAO)  and  the  other  fluorinated  (AFFF),  and a  foam
made  with  a common  surfactant,  SDS.  We  applied  a roughly  2  cm  thick  foam  layer  onto  three  liquid
fuels  (n-heptane,  methylcyclohexane,  and  isooctane)  at room  and  elevated  temperatures.  Foam  lifetime
was  reduced  by 50 and  75% for AFFF  and  RF6  respectively  for foams  on  fuels  compared  to  foams  on
irefighting foams
oam degradation
ubble

nterface

water  at  room  temperature.  For  all experiments,  the  fluorine-free  foams  (RF6  and  SDS)  degraded  much
faster than  AFFF.  Further,  the  effect  of fuel  temperature  was  significant  when  the  foams  were  placed
over  hot  fuel:  the  lifetime  of the  firefighting  foams  decreased  by  1–2  orders  of  magnitude  between
experiments  conducted  with  fuel  at room temperature  and  50 ◦C. Prior  to the  onset  of  foam  degrada-
tion  over  fuels,  the firefighting  foams  experienced  a preliminary  expansion  (by  up to 50%  in volume).
Video  recordings  of  degradation  show  that expansion  results  primarily  from  bubbles  near  the interface

increasing  in  size  with  accelerated  coarsening  by coalescence.  We  propose  and  discuss  a mechanism  for
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fuel-induced  foam  degradation  based  on our observations.  Our  results  show  that  fluorine-free  RF6
degrades  faster  than  AFFF  (by  a factor  of  3 at room  temperature  and  12  at elevated  temperatures  over
fuel),  which  may  contribute  to differences  in  their firefighting  performance.
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. Introduction

Firefighting foams are used to rapidly suppress and extinguish
ool fires in civilian and military applications [1]. The effectiveness
f foams is critical to achieve fast fire extinction especially for Navy
refighting applications to prevent weapons cook-off [2]. Weapons
ook-off refers to a situation in which exposure to heat from a fire
auses on-board weapons to detonate. Foams with fluorinated sur-
actants, referred to as aqueous film forming foams (AFFF), are able
o pass stringent military extinction requirements [3]. However,
uorinated surfactants have been shown to be bio-persistent in
he environment and pose health hazards to people [4]. New sur-
actants have been introduced into foams as alternatives to AFFF,
ut commercial foams without fluorinated surfactants developed
o date have not been able to extinguish fire as quickly as AFFF
5]. In this paper, we will investigate the differences in degradation
reduction in foam volume or foam layer thickness) between flu-
rinated and fluorine-free foams because foam’s effectiveness can
e severely deteriorated by foam degradation. Foam degradation
an be influenced by many factors including the hot fuel, fire, and
oam formulation that contains surfactants and additives needed
o generate the foam.

During firefighting, foam is applied to a fuel pool by a nozzle to
orm a foam blanket over the pool surface. The foam accumulates
nd creates a physical barrier between the fuel pool and the fire
bove. As the foam layer builds up, it suppresses vapors from the
uel pool traveling to the fire above, suppressing and eventually
xtinguishing the flame. Thus, during the firefighting process, the
oam is exposed to heat and fuel. The foam layer can degrade as it
nteracts with the fuel and flame. Degradation can adversely affect

 foam’s firefighting performance by destroying the foam layer and
educing the foam’s ability to block fuel vapors. However, causes for
ncreased foam degradation during firefighting are not well under-
tood. Further, it is difficult to separate the individual effects of fire
nd fuel on foam degradation in the presence of a fire. In this work,
e conducted experiments to quantify degradation of foam float-

ng on a fuel pool, which was maintained at a constant elevated
emperature. Experiments were conducted in the absence of a fire
o decouple the effects of the fuel from the effects of heat from the
re on foam degradation.

Previous research on foam degradation has focused on under-
tanding the natural aging processes of foam [6–16] and the effect
f hydrocarbon liquids interacting with foam [17–23]. The natu-
al aging process is highly dependent on the foam formulation.
esearchers have studied the intrinsic aging processes and their
ffects on foam degradation for a given foam formulation in the
bsence of fire [6]. Foams naturally degrade over time due to liquid
rainage driven by gravity and coarsening. Liquid is held between
oam bubbles within the bubble lamellae and in Plateau borders
t the junctions of the bubbles. As the liquid drains, the lamel-
ae become thin and rupture causing the bubbles to coalesce. The
ffects of drainage and coarsening on foam stability for a given foam
ormulation have been studied [7–16]. These works have elucidated
he effect of bubble diameter and coarsening on liquid drainage

ates from foam. Both Magrabi et al. [7] and Kennedy et al. [8] deter-
ined that larger bubbles, or bubbles that become larger through

oarsening, result in faster liquid drainage rates in foams. Kennedy
Published by  Elsevier  B.V.

et al. [8] determined that, as bubbles coarsen, the liquid drainage
rate increases. Even though many researchers, including Magrabi
et al. [7] and Kennedy et al. [8], quantified drainage and coarsening,
very few works directly relate liquid drainage and bubble coars-
ening to foam degradation as measured by the reduction in foam
volume with time for firefighting foams.

The effect of heavy hydrocarbons (oil) on the reduction in
foam volume (foam degradation) has been studied [17–23] for
enhanced oil recovery (EOR) with surfactants commonly used in the
petroleum industry. Osei-Bonsu et al. [17] mixed oil with the sur-
factant solution prior to generation of the foam. Therefore, the oil
was dispersed roughly homogenously in the resulting foam. Osei-
Bonsu et al. [17] measured bulk degradation as a decrease in foam
column height and bubble-scale degradation in a Hele-Shaw cell for
foams with four different surfactants in the presence of long-chain
(C10–C19) hydrocarbons. They found mixed surfactants (cocobeta-
nine and SDS) to be more effective in reducing degradation caused
by the oil than individual surfactants by slowing the lamellae thin-
ning. They also found that the smaller the chain length of the
hydrocarbon, the faster the degradation for a given surfactant for-
mulation because of increased coarsening rates at the bubble-scale.
Vikingstad et al. [18] proposed that the smaller chain hydrocar-
bons dissolve in micelles and destabilize the lamellae, while the
longer chain (>C10) hydrocarbons form immiscible droplets, which
increase lamellae stability. Vikingstad et al. [19] found that the
oil had no effect on foam degradation in the presence of perflu-
oroalkyl betaine (FS-500, DuPont). Simjoo et al. [20] found that a
column of foam decreases in height in stages, where the first stage is
driven by liquid drainage. The foam column enters a longer second
stage, which is driven by coalescence of bubbles rather than Oswald
ripening, before reaching a final height. In addition to reducing the
surface tension, the surfactant affects the rates of decay in foam
column height by changing the stability of a pseudo-emulsion film
formed near the lamellae-air interface. Introducing hydrocarbons
(C6–C16) into the foam generating solution had little effect on the
drainage but shortened the second stage by speeding up the coales-
cence of bubbles, and decreased the final height of the foam column.
Recently, Osei-Bonsu et al. [21] used a porous glass disc to generate
foams with expansion ratios 5–50 (volume of foam per unit volume
of liquid). They injected the foam into a Hele-Shaw cell containing
silicone oil. They examined the formation of large bubbles due to
destabilization of lamellae by silicone oil at a foam-oil interface.

Water evaporation from foam bubbles can also contribute to
degradation. Evaporation of water from the foam surface can occur
in the absence of heat: dry air in an open container will evaporate
foam faster than foam in a closed container where the air is satu-
rated with water. Heat from a fire can dramatically increase the rate
of foam degradation through water evaporation; however, limited
research has been conducted to quantify the effect of heat. Di Marzo
et al. [24] studied the thermal degradation of a 10 cm thick protein
foam layer (expansion ratio, 18) exposed to a radiant heat panel at
different radiant heat fluxes. The radiant panel was used to simu-
late the heat from a fire. They reported degradation as 7.6 mm/min
regression rate for a foam layer’s top surface exposed to a heat flux

of 17.5 kW/m2. They developed a simple model for surface regres-
sion based on an energy balance between radiant heat input and
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bsorption of latent and sensible heat associated with the water
vaporating from the foam surface.

In addition to water evaporation from lamellae, heat can also
ause bubbles to expand leading to increased liquid drainage and
ncreased bubble rupture. Lattimer et al. [25] measured the com-
ined effects of fuel and heat on firefighting foam degradation
decrease in foam column height) and the mass of liquid drained
rom the foam in the presence of a radiant heat source. They con-
ucted small-scale tests with the foam surface exposed to radiant
eating panels from above, similar to Di Marzo et al. [24], except
hat Lattimer et al. placed a JP-5 liquid pool (initially at room tem-
erature) underneath the foam. In their experiments, the average
ass evaporation of foam, the rate of liquid drained, and the foam

urface regression rate for a fluorinated foam were measured to be
.18 kg/m2min, 2.8 kg/m2min, and 0.0078 m/min  respectively for

 75 mm thick foam layer with an initial expansion ratio of 6 and
t 20 kW/m2 radiative flux to the foam surface. Lattimer et al. [25]
ound that degradation (measured as the decrease in foam column
eight) was increased significantly by the radiant heat flux due to

oam evaporation while the liquid drainage rate was unaffected by
he exposure to heat. Their data showed that degradation, evapora-
ion, and drainage occurred at the same time scale in the presence of
adiant heat. In comparison, degradation occurred at a much longer
ime scale than drainage without the exposure to heat. For a 25 mm
hick foam layer, Lattimer et al. noticed foam expanded initially,
ollowed by degradation when the foam was exposed to heat and
uel. Smaller hydrocarbon chain fuels such as heptane may  have a
ifferent effect on degradation in the presence of heat unlike JP-5.
he relationship between fuel properties and foam degradation is
ot well understood.

In this work, we describe experiments to measure foam degra-
ation and examine the effects of different surfactants used for
refighting foams, small chain-length hydrocarbon fuels, fuel tem-
erature, and initial foam properties such as bubble diameter and
xpansion ratio. The experiments isolate fuel effects from ther-
al  effects on degradation of a foam layer floating on top of a

eated fuel to obtain insights into the causes for enhanced degrada-
ion observed during the fire suppression process. Straight chain,
ranched, and cyclic saturated hydrocarbon fuels having roughly
he same vapor pressure were chosen to determine the nature of
he interactions between fuel and foam. Commercial fluorinated
nd fluorine-free firefighting surfactant solutions were chosen to
nderstand the effect of fluorine content on fuel induced foam
egradation.

. Approach

We  performed control experiments to isolate thermal effects
fuel and water temperature) from the physicochemical effects of
uel exposure to foam. For the room temperature experiments,
oam was placed in an empty vial as a control experiment for com-
arison of foam degradation rates with foams placed over fuel or
ater. The empty-vial experiment provided the natural rate of foam
egradation in the absence of other materials that can dissolve into
he foam. Experiments with foams placed over hot water acted as
he control for foam degradation at elevated temperatures. Each
egradation experiment was repeated three times with a freshly
enerated foam to determine reproducibility. The associated error
ars for the data represents the differences across the three tests.

We provide below a general description of foam degradation
easurements to establish context. We  detail property measure-

ents for fuels and surfactant solutions used, describe the foam

eneration method, detail property measurements for the freshly
enerated foams, and describe methods for measuring degradation
t room and elevated fuel temperatures. Despite using an identi-
ysicochem. Eng. Aspects 522 (2017) 1–17 3

cal foam generation method, foams exhibit different properties and
different extents of degradation. To derive a full understanding of
fuel induced foam degradation separate from degradation in the
absence of fuel, we show differences in properties among fuels,
surfactant solutions, and foams in this section.

2.1. Foam degradation measurement

Experiments were conducted to quantify foam degradation
when placed on top of a liquid fuel surface. We  quantified foam
degradation by measuring the foam layer thickness over time. We
did not consider changes in the “quality” of the foam as indicated
by its translucency or density. The liquid drainage from the foam
can change the foam’s density. However, we did not measure the
liquid drainage into the fuel in the small-scale apparatus due to
the small amounts of liquid contained in the foam. When the foam
was exposed to fuel, we  observed the formation of a large bubble
near the foam-fuel interface similar to that reported by Osei-Bonsu
et al. [17,21]. In our experiments, foam is exposed to the fuel at the
fuel-foam interface and the large bubble grows to cover the entire
fuel surface in the container forming a “gap”. A single large bub-
ble or “gap” separates the entire foam layer from the fuel surface
in the container. We  measured both the size of the “gap” and the
total foam layer thickness inclusive of the “gap” volume for the cir-
cumstances in which a gap formed. Furthermore, in some cases, the
foams expand and become translucent; we  report the increase in
foam layer thickness as foam expansion rather than degradation.

2.2. Fuels

We used n-heptane, isooctane, and methylcyclohexane (further
referred to as MCH) liquid fuels with properties listed in Table 1.
Vapor pressure was collected from the MSDS of the three fuels
[26–28], the solubility data was  collected from the Royal Society of
Chemistry [29–31], and the surface tensions were measured with
a DuNoy ring tensiometer at room temperature (25 ◦C). These fuels
loosely represent straight-chain compounds, branched, and cyclic
compounds found in gasoline and jet fuels. The three fuels selected
have similar vapor pressures to eliminate fuel concentration effects
on degradation. We  also conducted experiments by placing foams
onto liquid water, which has a slightly lower vapor pressure than
that of the tested fuels. Despite similarities in vapor pressure, there
are significant differences in surface tension and solubility in water
among the fuels. Fuel solubility in water is important because fuel
can significantly affect the surface tension [32] of water contained
in the foam.

2.3. Foams

The three foams used in this study were characterized for ini-
tial bubble diameter, initial bubble distribution, liquid drainage
beneath the foam, and initial expansion ratio measured soon after
the foam was  generated. The bubble diameter can affect foam
drainage and coarsening [8], which can affect foam degradation.

The AFFF (Buckeye 3%, Buckeye Fire Equipment Company, Inc.)
used in our experiments is MilSpec [3] qualified and is the most
widely used foam for naval firefighting applications. The AFFF sur-
factant solution is prepared by mixing the concentrate solution
provided by the manufacturer with distilled water at 3% (by vol-
ume), which appears color less.

The fluorine-free, firefighting foam, RF6 (Solberg
®

, formerly 3-M
Australia) used in our experiments was approved by the Inter-

national Civil Aviation Organization (ICAO). The RF6 surfactant
solution was  prepared by diluting the RF6 concentrate solution pro-
vided by the manufacturer with distilled water at 6% (by volume),
which appears yellowish brown.
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Table 1
Properties of n-heptane, isooctane, MCH, and water [26–31].

Fuel Chemical Formula Molar Mass
(g mol−1)

Vapor pressure
(mmHg, 20 ◦C)

Solubility (mg
fuel L−1 water,
25 ◦C)

Surface Tension
(dynes cm−3,
25 ◦C)

N-heptane C7H16 100.1 39.8 3.4 19.7
40.5 2.4 19.0
37.0 14.0 23.4
23.8 N/A 72.0
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Isooctane C8H18 114.1 

Methylcyclohexane C7H14 98.1 

Water H2O 18.0 

We  also prepared 1% (by weight) sodium dodecyl sulfate (SDS,
igma-Aldrich, Inc.) solution by dissolving the powder in distilled
ater. Even though SDS is not a firefighting foam, we chose SDS

or comparison with AFFF and RF6 because SDS has been well char-
cterized in literature. The two firefighting foams, AFFF and RF6,
ave been used in previous large scale fire testing [5] for evaluating
ilSpec performance.
Being commercial products, the precise compositions of the

oam concentrate solutions supplied by the manufacturers are pro-
rietary. However, Dlugogorski et al. [33] provided estimates of the
omposition of RF6 and AFFF concentrates obtained from Australian
ompanies. Based on the concentrate compositions reported, the
SDS of 3-M AFFF, and the RF6 patent [33–36], we calculated the

ompositions of 3% AFFF, 6% RF6, and 1% SDS solutions as shown
n Table 2. Table 2 shows that the total surfactant concentration in
olution is less than 1% by weight.

AFFF shown in Table 2 pertains to a specific brand and may  dif-
er in chemical composition from the formulation used in our work.
able 2 shows that the AFFF formulation has a mixture of hydrocar-
on and fluorocarbon surfactants unlike RF6, which is fluorine-free.
he hydrocarbon surfactant common in AFFF is diethanolamine
auryl sulfate and the one in RF6 is proprietary. A mixture of hydro-
arbon surfactants is commonly used in both AFFF and RF6.

We measured the physical properties of the surfactant solutions
t room temperature (25 ◦C) shown in Table 3. The density was
easured by weighing a known volume of surfactant solution. The

iscosity was measured with a glass viscometer (Fisher Scientific
o., 50 mm minimum depth, model F1426). The surface tension and

nterfacial tension were measured with a DuNoy ring tensiometer.
nterfacial tension between the surfactant solutions and n-heptane

ere measured. The measured density, viscosity, and surface ten-
ion agree with properties collected by Kennedy et al. [8] which
ere collected at 22 ◦C.

Table 3 shows significant differences in surface tension, inter-
acial tension, and viscosity among the surfactant solutions used
n our experiments. The surfactants and additives increase the vis-
osity of AFFF and SDS solutions slightly and increase the viscosity
f RF6 solution significantly relative to the viscosity (1 cP) of pure
ater.

.4. Foam generation

Foams were generated using a sparger system shown in Fig. 1.
t consists of a nitrogen gas humidifying container on the left and a
oam generating container on the right of Fig. 1. The foam generator
as fitted with a plastic lid and an exit tube made of a piece of
algene braided vinyl tubing, 2 cm in diameter, 5 cm long that was
ttached to the side as shown in Fig. 1. A cylindrical gas sparger (Ace
lass, 4160-09) made of Pyrex glass having pore sizes 170–210 �m
as used for generating the foam. The sparger was  placed inside

he 525 mL  foam generator, 3 cm from the bottom of the container,
ubmerged 6 cm in depth. To generate the foams, we poured 400 mL

f the surfactant solution into the foam generator on the right in
ig. 1. Humidified nitrogen was fed at a rate of 390 mL/min through
he sparger in the foam generator to generate bubbles inside the
urfactant solution that would rise through a liquid column of 6 cm
Fig. 1. Diagram of foam generation process.

to the top of the container and dispense through the outlet tube.
The height of the liquid column above the sparger is important
because it can affect the expansion ratio and liquid drainage rate of
the foam. Prior to the foam generator, nitrogen was  passed through
another sparger placed in liquid water to humidify the nitrogen
in a closed glass container. The nitrogen flow rate was  controlled
with a Sierra Instruments 0–2 L nitrogen flow controller (Model
number 840-L-2-0V1-SV1-D-V1-S1). Nitrogen was chosen instead
of air to generate the foam to prevent the formation of a flammable
mixture of air and fuel for safety. Experiments were also performed
using a Pyrex glass sparger having pore sizes 10–20 �m (Ace Glass,
Product Number Z408727) to generate foams with smaller bubble
diameters. The sparging method used in our bench-scale study is
different from the large scale MilSpec method [3] which employs
an aspirated nozzle with the surfactant solution fed under pressure
to generate foam. As a result, the foam properties such as bubble
diameter and expansion ratio can differ significantly between the
bench and large scale systems.

2.5. Foam properties

The foams were characterized by measuring the initial values
for bubble diameter, bubble diameter distribution, expansion ratio,
and liquid drainage rate from the foam. All four properties change
with time, are dependent on the type of surfactant formulation
used, and influence foam degradation. Within 30 s of generating
the foam, we  filled a rectangular plastic container (2.1 cm × 2.1 cm
width and 26.2 cm height) with foam dispensed from the outlet of
the foam generator, and captured an image of the bubbles adjacent
to the container wall as soon as the camera focused at the middle
region (about 6 cm height) of the container. A rectangular vessel
was chosen to eliminate curvature effects on the recorded images.
A Sony HandyCam HDR-CX240 with 29.8 mm lens, 9.2 megapixels
was used to take the image. The image captured half the width of
the container and about 1 cm of foam column height to produce
an image with the clearest resolution. We  estimate that a 1 cm
high foam column, 1 cm in width contains roughly 30 × 30 bub-

bles, with 900 bubbles per image. Using a measurement capability
in ImageJ, an image processing program, we measured the diam-
eter of individual bubbles against a ruler, which was  placed next
to the container wall. We  analyzed around 300 bubbles for each
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Table  2
Compositions of AFFF [33,35], RF6 [33,34], and SDS [36] surfactant solutions by weight obtained from other works.

Material AFFF FC3002 (%) RF6 (%) SDS (%)

Water 98.1–98.5 97.6–98.8 99
Diethyl  glycol butyl ether 0.9–1.2 0.42–0.84 N/A
Alkyl sulfate salts 0.03–0.15 N/A N/A
Amphoteric fluoroalkylamide derivative 0.03–0.15 N/A N/A
Perfluoroalkyl sulfonate salts 0.03–0.15 N/A N/A
Sodium  dodecyl sulfate N/A N/A 1
Hydrocarbon surfactant 0.03–0.18 <0.6 N/A
Thickeners (xanthan gum, sugars) N/A 0–0.42 N/A

Table 3
Physical properties for the surfactant solutions at 25 ◦C.

Foam Density (g mL−1) Viscosity (cP) Surface Tension (mN  m−1) Interfacial Tension (mN  m−1)

AFFF 1.03 1.2 16.4 1.5
RF6  1.06 2.4 26.4 3.31
SDS  1.06 1.1 37.6 6.03

Table 4
Initial average bubble diameters for three foams generated using spargers having
pore sizes 170–210 �m and 10–20 �m at 25 ◦C.

Foam AFFF RF6 1% SDS Sparger

Bubble Diameter (mm)  0.54 ± 0.1 0.7 ± 0.3 0.6 ± 0.1 170–210 �m
0.3  ± 0.1 0.26 ± 0.1 N/A 10–20 �m
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Table 5
Initial expansion ratios for three foams generated using a sparger, pore sizes
170–210 �m and 10–20 �m.

Foam AFFF RF6 1% SDS Sparger

Expansion Ratio 9.6 ± 0.3 10.5 ± 0.4 15.5 ± 0.1 170–210 �m
ig. 2. Initial bubble diameter distribution for AFFF, RF6, and SDS using a sparger
ith pore size 170–210 �m.

oam to determine the bubble diameter distribution. For a given
oam, we generated foam into the container three separate times
nd took three images at the same position and calculated the mean
oam bubble diameter to determine reproducibility. Table 4 shows
he arithmetic average of the three mean values calculated from the
hree images for a given foam as well as the error which is one stan-
ard deviation from the mean value. We  note the bubble diameter
eported in Table 4 could be affected by the wall of the container
nd may  differ from the true values at the center of the container,
ot adjacent to wall.

The differences among the initial bubble diameters for different
oam formulations seem to be relatively small despite significant
ifferences among the physical properties of the surfactant solu-
ions used to generate the foams as shown in Table 3. However,
he bubble diameter differences can become large with time due to
ifferences in the coarsening rates, which are affected by the initial
ubble diameter distributions shown in Fig. 2.

Fig. 2 shows the initial bubble diameter distributions measured
rom one of the three trials of a given foam. The bubble diameters

f the 300 bubbles were placed into 13–30 bins to determine the
ubble diameter distribution. The bin width was determined by
ubtracting the smallest and largest of the 300 bubbles and divid-
ng the difference by the expected number of bins. More bins were
6.4 ± 0.3 5.15 ± 0.3 N/A 10–20 �m

added if the distribution was too wide, like in Fig. 3(a). Fig. 2 shows
that the bubble diameter distributions differ significantly among
different surfactant formulations even though the average bubble
diameters differ only by 0.2 mm in Table 4. AFFF has a unimodal dis-
tribution close to the average bubble diameter shown in Table 4, but
also has a large portion of bubbles slightly smaller or larger than
the average. RF6 has a bimodal distribution exhibiting two clear
peaks in the distribution curves; one peak, slightly smaller than
the average diameter, the other peak slightly larger. The bimodal
distribution can be seen in all three trial images of RF6 foam as
shown in Fig. 3. However, there is significant variation in the posi-
tion of the two peaks causing a higher standard error of 0.3 in the
average bubble diameters of RF6 foam compared to AFFF and SDS
foams as shown in Table 4. The large variation among Figs. 2 and 3 in
bubble diameter distributions for RF6 foam may  be due to incon-
sistencies in foam generation specific to RF6. RF6 has the widest
bubble diameter distribution followed by AFFF with SDS having
the narrowest distribution. The bubble diameter distribution can
be important because it affects coarsening of bubbles, which can
affect foam degradation.

Magrabi et al. [7] and Kennedy et al. [8] measured bubble diam-
eter distributions using foam generation methods different from
the sparging technique used in our work. However, Kennedy makes
note of the unimodal and bimodal nature of AFFF versus RF6, sim-
ilar to that shown in Figs. 2 and 3. Using a T-junction to generate
foam, Kennedy et al. [8] showed that RF6 bubbles coarsen faster
than AFFF, and correlate with the wider bubble diameter distribu-
tion for RF6 compared to AFFF. The difference in coarsening rates
could relate to foam degradation similar to differences in degra-
dation discussed by Osei-Bonsu et al. [17] for foams used in the
context of EOR.

Table 5 below provides the initial expansion ratios for the three
foams. The initial expansion ratio was measured by filling a 250 mL
beaker with foam as soon as it was generated (within 10 s) and mea-
suring the mass of the foam on a scale. Using the measured foam

volume and mass, we calculated the expansion ratio as the volume
of foam generated per unit liquid volume of water in the foam. Dif-
ferences in expansion ratio emulate differences in the initial liquid
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Fig. 3. Initial bubble diameter distributions for RF6 foam generated using a sparger ha
distributions.
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ig. 4. Liquid drainage from foam over time in an empty graduated cylinder gener-
ted using a 170–210 �m pore size sparger.

ontent of the foams, which can contribute to differences in foam
egradation.

Liquid drainage from foam is one of the natural aging processes
hat affects degradation and stability of the foam [7–13]. Fig. 4
hows volume of liquid drained as a fraction of initial volume of
iquid contained in the foam with time. For the drainage exper-
ments, a 500 mL  graduated cylinder 37.5 cm in height, 5 cm in
iameter was filled with foam dispensed straight from the foam
enerator. The liquid column height that collected at the bottom
f the cylinder over time was measured as soon as the foam was
enerated using a video camera, which records the change in the
osition of the foam-liquid interface with time. The volume of liq-
id contained in the foam is determined from the initial weight (or
rom the initial expansion ratio) of the foam and is used to calcu-
ate the fractional drainage with time. Despite differences in the
nitial expansion ratio and the amount of liquid drained among the
hree foams, the drainage curves can be scaled based on fractional
rainage as shown in Fig. 4.

Fig. 4 shows that AFFF foam has the fastest liquid drainage rate
espite AFFF’s smaller average bubble diameter shown in Table 4,
ith RF6 foam having the second fastest rate and SDS foam the

lowest liquid drainage rate. The drainage rate is expected to be
ery sensitive to bubble diameter and the surfactant type, which
an affect different bulk and surface properties. AFFF surfactant
olution has a smaller bulk viscosity than the RF6 solution as shown
n Table 3 which may  contribute to the faster liquid drainage rate
f AFFF foam. The SDS solution also has a smaller viscosity than
he RF6 solution and yet the drainage rate for SDS foam is less
han that of RF6 foam. This could be due to a higher initial expan-
ion ratio (or a smaller water content) for SDS foam relative to
he RF6 foam as it was shown that the increased expansion ratio
ecreases the drainage rate [8]. In addition to the bulk properties,

he type of surfactant can also affect the surface properties like
urface viscosity and surface tension. The differences in surface vis-
osities of surfactant formulations can significantly influence the
rainage rates [11]. The higher drainage rate for AFFF foam rela-
ving pore sizes 170–210 �m for (a) Trial 1 and (b) Trial 2, both showing bimodal

tive to RF6 foam was  also reported by Kennedy et al. [8] despite
differences in the generation methods; Kennedy et al. [8] used a
1/2 inch T junction to mix  air and surfactant solution that pro-
duced bubbles in micrometers rather than the millimeter bubbles
produced in our work. Lattimer et al. [25] reported 214 s for 25%
liquid drainage and 9.7 expansion ratio for AFFF foam, which was
generated using a food processing blender; however, 25% liquid
drainage time is 260 s for AFFF in our work. The drainage rate
reported by Lattimer et al. [25] is faster than that shown in Fig. 4
possibly because of differences in the brands of AFFF used and in
bubble diameters. Note that the drainage rates shown in Fig. 4 were
measured for foams in an initially empty glass container, which
corresponds to the control experiment without the presence of
fuel.

2.6. Measurement of foam degradation in the presence of
different fuels

Foam degradation in five scenarios were measured: (1) a con-
trol experiment with foam placed in a dry glass beaker (no liquid
beneath the foam), and foam placed over a liquid (2) water, (3)
n-heptane, (4) isooctane, and (5) MCH. The control and water
scenarios were conducted to measure the natural rate of foam
degradation for reference. The fuel experiments were conducted
and compared to the control experiments to isolate the effect of
fuel on foam degradation.

Four Pyrex glass 70 mL  vials (one for each of the liquids in
Table 1) were each filled with 10 mL  of liquid at room temperature.
The vials have a diameter of 3.3 cm,  7.5 cm in height. Using the foam
generator described above, a 2.4–2.7 cm (roughly 10–20 mL)  thick
layer of foam was placed on top of each liquid immediately after
generation, and the vials were then filmed side by side until com-
plete degradation of foam occurred. The videos were condensed
and analyzed to determine the rate of change in foam thickness for
each foam on each liquid.

Separate experiments were conducted to examine the bubble
dynamics induced by interactions between the foam and fuel at
their interface. Foam and fuel were placed in the rectangular plas-
tic container (2.1 cm × 2.1 cm wide × 26.2 cm long) used to measure
bubble diameter. A rectangular vessel was chosen to eliminate
curvature effects on the recorded images. Fuel filled 9 cm of the
container and the remainder was  filled with foam directly from
the foam generator. The Sony HandyCam used for bubble diameter
measurements was  also used to zoom in at the foam-fuel interface
with the camera capturing a quarter of the width of the column

and 0.5 cm foam height. This magnification allowed us to record
bubbles adjacent to the foam-fuel interface over time and analyze
their behavior. The interactions were recorded for AFFF and RF6
foam over room temperature n-heptane.
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Fig. 5. Images taken of RF6 foam degradation at (a) 0 min, (b) 1 h, and (c) 5 h with
no  liquid (control) and over 3 liquids (water, n-heptane, and MCH) to detail the
change in foam thickness over time. The control experiment contained no liquid
K.M. Hinnant et al. / Colloids and Surfaces

.7. Foam degradation experiment at elevated fuel temperature

In a pool fire, the fuel is heated from above by the flame to a near
oiling point temperature (near 100 ◦C for n-heptane); therefore, it
ould be useful to quantify the dependence of foam degradation

n fuel temperature. When foam is applied onto a burning pool
urface, the foam decreases the pool surface temperature imme-
iately upon contact to about 50 ◦C [37]. We  therefore conducted
xperiments to measure degradation at a fuel temperature of about
0 ◦C.

To study the effect of increased fuel temperature, we performed
xperiments by placing a 150 mL  glass beaker (diameter 5.5 cm)
n a water bath controlled by a thermostat to maintain a constant
emperature. We  then poured 60 mL  of preheated liquid fuel into
he beaker using a funnel. Foam was generated and spread into a
.8–2 cm (30–40 mL)  layer floating on top of the preheated liquid
uel. We  were careful to keep the water bath level just below the
oam-fuel interface in the beaker so that the foam is not heated by
he water bath directly. A video camera attached to the computer

onitored the foam behavior over time (average duration: about
 h). We  determined the thickness of foam by measuring the height
f the top surface of the foam layer and the liquid fuel surface seen
n the recorded video. In the cases where a gas bubble or “gap”
ifted the entire foam layer from the liquid fuel surface, we  also

easured the size of the “gap” from the video and included the
eight of the bubble in the recorded volume of foam. We  believe
he gap is a result of foam bubbles bursting and coalescing to form a
ingle bubble that spans the width of the container when in contact
ith the liquid fuel. Thus, the gap contains the gas that was inside

he foam bubbles and may  also contain some fuel vapors. Similar
o room temperature interface recordings, separate experiments
ere conducted to investigate the bubble dynamics adjacent to the

oam-fuel interface at elevated fuel temperatures. The interactions
ere recorded for AFFF and RF6 foam over n-heptane heated to

0 ◦C in the rectangular plastic container.
As the fuel temperature is raised, foam can be degraded both

hermally and through increased interactions between the foam
nd fuel due to higher fuel vapor pressures or vapor concentra-
ions. Experiments with foams floating over heated water served
s a standard for the natural rate of foam degradation at elevated
emperatures. The hot water experiments isolated the effect of tem-
erature on foam degradation because of the compatibility of foam
ith water unlike with fuel. The foam degradation caused by the
eated water were compared to that over n-heptane at elevated
emperatures to determine the dependence of foam degradation on
uels at elevated temperatures due to the increased vapor pressure.

. Results and discussion

We  describe the results from the foam degradation experiments
n this section. We  define degradation as a reduction in foam layer
hickness regardless of any changes in foam density or “quality”.
irst, we describe the effect of fuel on foam degradation at room
emperature by comparing the change in foam thickness over time
or foams placed on water and on different fuels. In addition to
howing the differences in foam degradation between fuels and
ater, we will also describe the differences between foams contain-

ng fluorocarbon (AFFF) and hydrocarbon (RF6 and SDS) surfactants.
e  will show similar comparisons among foams and fuels at ele-

ated fuel temperatures. We  describe the changes in bubbles in the

mmediate vicinity of the fuel-foam interface and discuss possible

echanisms of degradation. The size of a single large bubble or
gap” formed near the foam-fuel interface is also reported sepa-
ately.
before foam application. The red arrow in Fig. 5(a) indicates the foam-fuel interface.
Initial foam thickness was 2.4–2.7 cm.  (For interpretation of the references to colour
in  this figure legend, the reader is referred to the web version of this article.)

3.1. Room Temperature experiments

Fig. 5 shows time-lapse images of a 2.4–2.7 cm thick RF6 foam
layer placed in an empty vial, 3.3 cm in diameter (control experi-
ment) and over 10 mL  of n-heptane, water, and MCH  from left to
right. In Fig. 5(a), it is seen that the foams start off at an initial height
at time zero. After 1 h, the foam above n-heptane and MCH  has
expanded while the foam above water and the control experiment
has degraded as indicated by the reduction in foam layer thickness.
The foam layers over fuel appear more translucent and less dense
compared to those in the empty vial or in the vial containing water.
In 5 h, the foams over n-heptane and MCH  have fully degraded while
foam in the control experiment and over water degrade to a lesser
degree. Fig. 5 shows that foam layers in contact with water and the
glass surface degrade slowly in a similar way  without expansion,
while the fuels seem to cause the foam to expand first followed by
a faster degradation period.

The immiscible nature of n-heptane and MCH  in water intro-
duces incompatibility into an aqueous system and could have
caused the expansion of foam rather than a decrease in foam
thickness and will be discussed later in more detail. We  made no
measurements of foam quality, only the change in foam height over

time. All foams drained water during the 5 h period, causing the
foam layer to become dry. Thus, liquid drainage decreases foam
density, which is reflected in the reduced “quality” of the foam
seen in Fig. 5(b). A very dry foam is susceptible to evaporation of
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ig. 6. Foam degradation versus time for the control experiment and foam over
ater at 20 ◦C for SDS, RF6 and AFFF foam. Initial foam thickness was 2.4–2.7 cm.

ater in the foam, breakage of bubbles, coalescence, and coarsen-
ng contributing to both reduced quality as well as the degradation
rocess. It is possible the liquid drainage could have been affected
y the presence of the hydrocarbon liquid underneath. Because of
he unevenness of the foam layer as time continued, the foam thick-
ess was measured using ImageJ software at various points along
he diameter of the glass vial. This does not account for differences
etween foam thickness at the front and back (not seen in Fig. 5)
f the glass vial; however, differences at various points along the
iameter of the foam are relatively small.

Fig. 6 displays the change in foam thickness as a percentage of
ts initial thickness with time for the three foams. Fig. 6 compares
he effects of the foam layer’s contact with glass in an empty vial
control) and water surfaces on foam degradation. Foam lifetime
efers to the time taken for 100% degradation of the foam layer
hickness.

In the control experiments with no liquid beneath the foam, SDS
oam degrades completely within 3 h while RF6 and AFFF foams
egrade completely over 13–15 h. SDS foam has a higher expansion
atio than AFFF and RF6 foams as shown in Table 5. Also, unlike
DS foam, AFFF and RF6 foam contain additives to control liquid
iscosity, surface tension, and other properties important to their
refighting performance. The SDS foam degrades faster than RF6

oam despite slower liquid drainage characteristics shown in Fig. 4.
ig. 6 shows that the degradation of AFFF and RF6 foam are very sim-
lar in the control experiments despite differences in the surfactant
ormulation (fluorinated surfactant versus hydrocarbon surfactant
nd additives) as shown in Table 2.

As seen in Fig. 6, RF6 and AFFF foam degrade at very similar rates
n the control experiments wherein no liquid is beneath the foam.
owever, placing RF6 and AFFF foam over water appears to increase

oam lifetime from 13 to 15 h to more than 60 h (Fig. 6 only shows
p to 30 h), with neither foam completely degrading within 60 h.
ig. 6 shows a deviation in behavior between the foams in an empty
ial and foams over water around 11 h when the foams would be
ignificantly dry due to liquid drainage. It is possible that capil-
ary action helps replenish the water lost in the foam by drawing
rom the water underneath. Mensire et al. [38] conducted experi-

ents with foam solution or olive oil placed under a very dry foam
expansion ratio 833–14285) and monitored the rise of liquid into
he foam against gravity due to capillary action. Mensire found that
he liquid rose 5.5 mm upwards into the foam’s Plateau borders
n 200 s for monodisperse foams with an expansion ratio of 1408
nd a bubble diameter of 1.8 mm.  So, it is possible that the liq-

id water can rise into the foam when it is very dry, replenishing
he dryness of the foam, elongating foam lifetime. However, Fig. 6
lso shows that the replenishment of water may  not have occurred
o a significant extent in SDS foam because SDS foam degraded in
Fig. 7. Foam degradation versus time on n-heptane at 20 ◦C. Initial foam thickness
was  2.4–2.7 cm.

3 h regardless if the foam was over water or in an empty vial. The
foam may  have degraded before it became dry enough for capil-
lary rise of the liquid water. This further suggests that degradation
is affected by the surfactant formulations. In addition to changes
in foam thickness, we  looked for any differences in foam quality
between the foams in an empty vial and over water. Visually exam-
ining the vials in Fig. 5, there is no apparent difference in the foam
quality (i.e. translucence) when placed in an empty vial or over
water.

Fig. 7 shows that the three foams have a significantly reduced
foam lifetime when placed over n-heptane (relative to the water
and control experiments). Comparing lifetime values of the control
experiments in Fig. 6 with those in Fig. 7 shows that the presence
of n-heptane reduced the lifetime by almost half (from 13 to 15 h
to 8 h) for AFFF foam and by a factor of 6 (to 2.5 h) for RF6 foam. The
fuel effect on foam lifetime is even larger relative to those measured
over a water layer. Comparing the lifetimes in Fig. 7 with those for
the experiments over a water layer shows that the presence of n-
heptane reduced the lifetime by more than a factor of 8 (from more
than 60 h to 8 h) for AFFF foam and by a factor greater than 25 (to
2.5 h) for RF6 foam. Even SDS foam was affected by the presence
of n-heptane, while the presence of water had little effect on foam
lifetime for SDS foam. The lifetime of SDS foam decreased by a factor
of 2.5 (from 2.5 h to 1 h) by n-heptane as shown in Fig. 7. These are
very significant changes in degradation caused by the hydrocarbon
fuel.

Before degrading completely, RF6 and AFFF foam expand at
short times after being in contact with n-heptane as indicated by
the increased foam layer thickness shown in Fig. 7. There was no
expansion in the case of SDS. Expansion of RF6 and AFFF foams were
not seen in the control or water experiment as shown in Fig. 6. As
seen in Fig. 5, foam (RF6) over n-heptane has much larger bub-
bles and appears translucent compared to the foams in the dry vial
and over water. Heptane is volatile and forms a significant amount
of vapor near the foam-heptane interface in a mostly immiscible
system. The formation of n-heptane vapor could have caused the
expansion at the interface initially. As the vapor transports and dis-
solves slowly into the foam due to its solubility (see Table 1), it may
degrade the foam and cause eventual reduction in the foam layer
thickness.

We also measured foam degradation for the three foams in con-
tact with liquid isooctane and MCH  (see Table 1 above for a list of
the fuel properties). The percent change in foam thickness versus
time for AFFF, RF6, and SDS foam at room temperature on the three
fuels are plotted in Figs. 8, 9, and 10 respectively. Figs. 8–10 show
that the type of fuel impacts foam degradation despite their simi-
lar vapor pressures listed in Table 1. The trend in the degradation

behavior for the fuels is consistent for all foams: the shortest foam
lifetimes are over isooctane and the longest foam lifetimes are over
MCH  regardless of the three surfactant formulations. For all fuels,
AFFF and RF6 foam exhibit foam expansion initially but eventually
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Fig. 8. AFFF foam degradation versus time over three different room temperature
fuels (20 ◦C). Initial foam thickness was 2.4–2.7 cm.

Fig. 9. RF6 foam degradation versus time over three different room temperature
fuels (20 ◦C). Initial foam thickness was 2–2.5 cm.
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ig. 10. SDS foam degradation versus time over three different room temperature
uels (20 ◦C). Initial foam thickness was 2.2–2.7 cm.

egrade unlike SDS foam, which does not exhibit foam expansion.
gain, AFFF foam lifetimes are longer than RF6 foam lifetimes with
DS foam having the shortest lifetimes on all fuels considered.

To explore the role of fuel in foam degradation further, we  filmed
he region near the interface between the foam and the fuel in

 separate experiment to determine changes in bubble behavior
ue to the presence of fuel. Figs. 11 and 12 below are time-lapse

mages of the interface of the foam over n-heptane (top row) and
ater (bottom row) at room temperature for RF6 and AFFF foam,

espectively.
For RF6 foam over n-heptane, bubbles at the interface began

o grow larger relative to those farther away from the interface.
ig. 11(a) and (b) shows that bubbles grow in time near the inter-
ace. We  notice from the video that bubbles at the interface grow
ith time and undergo sudden rupture of lamella separating one

ubble from another. As the lamella ruptures, the two  adjacent
ubbles coalesce. Thus, bubbles appear to expand and then coa-

esce into each other, forming larger and larger bubbles over time.
ig. 11(c) shows one large bubble as a result of the expansion and

oalescence of multiple bubbles. During this period, all bubbles near
he interface seem to grow. We  did not notice formation of new
ubbles by the fuel vapor. The growth continues until all bubbles
oalesce into one bubble spanning the region captured by the video
ysicochem. Eng. Aspects 522 (2017) 1–17 9

camera. For the same time frame, the water-foam interface shown
in Fig. 11(d–f) is relatively calm, devoid of the dynamics that form
large bubbles compared to Fig. 11(a–c). We  did not see the rapid
lamella rupture in foams over water that is seen with foam over
n-heptane. The foams exposure to fuel clearly is affecting bubble
growth and coalescence. The streaked lines in Fig. 11(d–f) are small
distortions in the corner walls of the plastic container that become
visible through a transparent liquid at high magnification.

Video evidence focused on a portion of the interface, but the
entire foam layer was observed for qualitative understanding of
foam degradation. We  noticed that bubbles at distances farther
(not shown in Fig. 11) from the interface also became larger for
RF6 over n-heptane and over water, but at a much slower rate than
the bubbles at the foam-fuel interface. This bubble growth away
from the interface may  be the result of classical Oswald ripen-
ing [7,8,14–16] (or classical coarsening), an expected form of foam
aging with time due to diffusion of gas from small bubbles to large
bubbles. In Oswald ripening, small bubbles decrease in size and
large bubbles increase in size. However, the coalescence of bubbles
seen at the interface is different from the diffusion-based coarsen-
ing mechanism occurring in the control experiment as discussed
by Magrabi et al. [7] and Kennedy et al. [8]. Using Kennedy’s coars-
ening equations and considering the initial bubble diameters to be
0.7 mm for RF6 foam and 0.54 mm for AFFF foam, the bubbles’ diam-
eters are predicted after 30 min  to increase to 1.4 mm for RF6 foam
and 0.96 mm  for AFFF foam in the control case without a fuel. In
Fig. 11(b), the large bubble at the fuel-foam interface after 30 min
is about 3 times larger than 1.4 mm.  In comparison, the foam over
water has bubble diameters roughly 1 mm at 30 min  as seen in
Fig. 11(e) and are closer to the predictions of Kennedy et al. [8].
Thus, the change in bubble diameter at the interface does not seem
to be described by the classical gas-diffusion-coarsening dynamics
for RF6 foam above n-heptane unlike that on water.

The coalescence of bubbles near the foam-fuel interface is also
seen for AFFF foam in Fig. 12, but at a slower rate than shown in
Fig. 11 for RF6 foam. Again, bubbles at the foam-water interface
seem to grow to about the same size (about 1 mm)  comparable
to that expected from the classical diffusion driven coarsening as
shown in Fig. 12(d–f).

Large bubbles begin to form at the interface for AFFF foam in
Fig. 12(a–c). Comparing Figs. 11 and 12, in an hour, RF6 foam forms
one large bubble over the recorded region of the interface while
AFFF foam still has multiple bubbles that have yet to coalesce into
one bubble. The coalescence near the foam-fuel interface at room
temperature was noted by Osei-Bonsu et al. [17] and Simjoo et al.
[20] for SDS and other foams used in the petrochemical industry for
EOR. They showed degradation was caused by coalescence when
the foams were homogeneously mixed with alkane fuels rather
than due to Oswald ripening of bubbles and that the large bub-
bles contained the volume of gas in the smaller bubbles before
they coalesced. They showed that the bubble coalescence occurred
with short chain (ten carbon length or less) alkane hydrocarbons,
which had higher mobility in the aqueous phase relative to heavier
hydrocarbons. For long chain hydrocarbon fuels, they reported an
increase in foam stability. In future work, it would be interesting
to examine degradation of firefighting foams in contact with heav-
ier fuels. Recently, Osei-Bonsu et al. [21] examined the foam-oil
interface in a Hele-shaw cell and observed formation of large bub-
bles due to rupturing and coalescence of smaller bubbles by the
oil. This caused foam destruction similar to the events depicted in
Figs. 11 and 12. When they replaced oil with water, the large bub-
ble growth was not observed at the foam-water interface similar to

the observations in our experiments when the foams were placed
over water.
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Fig. 11. Interfacial images of RF6 foam over n-heptane (a–c) and water (d–f) at 20 ◦C; interface position between the liquid and foam is shown by a red line on the left of the
images. The white arrow in (b) denotes the diameter of the bubble in the image which exceed 1 mm in diameter. The white arrow in (c) indicates that the diameter of the
bubble  extends beyond the captured image. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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ig. 12. Interfacial images of AFFF over n-heptane (a–c) and water (d–f) at 20 ◦C; 

mages. The bright reflective spots at the interface in (a–c) is a reflection on the wate
egend, the reader is referred to the web version of this article.)

.2. Elevated temperature effects

We  studied the effect of fuel temperature on foam degradation
y heating the fuel externally to observe foam degradation at more
elevant temperatures for firefighting. Measurements conducted
t room temperature showed degradation taking hours; but, in fire
uppression, degradation will be important on time scales of min-
tes. Because of the short lifetime of SDS, foam degradation for SDS
as not measured at elevated temperatures in this work. Foams
ere placed over hot fuel and hot water to isolate the thermal effect
n foam degradation. The elevated liquid temperature increases
he amount of vapor formed at the interface significantly. Because
ater will not transport (in net terms) through the already aqueous

oam, only heat will be transported through the foam. Because fuels
ce position between the liquid and foam is shown by a red line on the left of the
ned from the AFFF foam. (For interpretation of the references to colour in this figure

can transport through the foam, the foam may  be affected by the
temperature or through new interactions with the fuel. By compar-
ing the degradation to foam over fuel and water, we  can separate
these effects. Fig. 13 shows time-lapse images from AFFF and RF6
placed on hot n-heptane at 50 ◦C.

In our experiments, 30–40 mL  of foam initially at room temper-
ature is placed over 60 mL  of hot (preheated) liquid fuel or water in
a 150 mL  glass beaker (5.5 cm diameter and 8 cm height). The liquid
temperature was maintained to be constant during the experiment
by placing the lower part of the beaker (up to the 60 mL  mark) in

a heated water bath equipped with a thermostat which was  set
at the desired temperature during the experiment. A clamp used
for handling can be seen at the top of the beaker in Fig. 13. As
time continues, the foam thickness changes. Fig. 13 shows that the
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Fig. 13. Images from the video taken during experiments with AFFF (a-c) and RF6 (d–f) foam floating on liquid n-heptane at an elevated temperature (50 ◦C). Red line indicates
the  level of the water bath outside of the beaker in (a)–(f). Fuel is inside the beaker at the same height as the water level outside of the beaker. Initial foam layer thickness
was  1.8–2 cm above the fuel layer. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Foam degradation versus time for AFFF and RF6 foam over water at 50 ◦C
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Fig. 15. AFFF foam degradation versus time over n-heptane at room temperature,
35, 50, 75, and 90 ◦C. Initial foam thickness was  1.8–2 cm.
nd  room temperature relative to the initial thickness. Initial foam thickness was

.8–2 cm.

oam thickness is not uniform during the experiment. We  measured
he foam thickness along the diameter of the container from video
ecordings using ImageJ software and reported the average value
s the foam thickness.

Fig. 14 plots the percent change in foam thickness with time
or AFFF and RF6 foam placed over hot water at 50 ◦C and at room
emperature. Fig. 14 shows that both foams degraded less than 10%
uring an hour period over water at 50 ◦C and at room temperature.
or AFFF, foams over heated water actually degraded slightly less
han foams over room temperature water on average; however, the
rror associated with the measurements concludes that the differ-
nce is not statistically significant. The effect of water temperature
n degradation is small. Therefore, when the foams are placed on

 hot fuel, heat transfer alone is expected to cause less than 10%
egradation in one hour. We  observed no increase in foam thick-
ess for AFFF and RF6 placed over water at elevated temperatures.
imilar to room temperature measurements, AFFF and RF6 appear
o degrade at comparable rates.

Figs. 15 and 16 show the foam degradation rates for AFFF and
F6 foam respectively over heated liquid n-heptane. Comparing
igs. 15 and 16, a clear trend emerges as the fuel surface tempera-
ure changes. Foam lifetime decreases as the temperature increases

s indicated by the change in foam thickness with time for AFFF
nd RF6 foam layers placed over n-heptane. For example, AFFF and
F6 foam degrade faster at 50 ◦C than at room temperature over n-
Fig. 16. RF6 foam degradation versus time over n-heptane at room temperature, 35,
50,  75, and 90 ◦C. Initial foam thickness was 1.8–2 cm.

heptane. The temperature effect is considerable because RF6 and
AFFF foam degraded in hours at room temperature, but only in
minutes at elevated temperatures. Comparing Figs. 15 and 16 with
Fig. 7, the foam lifetime decreased by 13.7 and 75 times for AFFF and
RF6 foam respectively as the n-heptane temperature is raised from
20 ◦C to 50 ◦C. As the fuel temperature is raised, there is a higher
concentration of fuel vapors beneath the foam than at lower tem-

peratures. This increased concentration at the foam interface can
increase the amount of fuel transport through the foam, increasing
the rate of foam degradation. As discussed above, the heat trans-
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was only seen for AFFF over n-heptane and MCH  at 50 ◦C. In Fig. 20
ig. 17. AFFF foam degradation versus time over heated fuels. Initial foam thickness
as  1.8–2 cm.

er from the hot fuel to foam is expected to have a relatively small
less than 10%) effect based on the hot water experiments shown in
ig. 14. The fuel temperature effect is by far the largest compared to
he effect of different fuels and surfactant formulations (including
he additives). The effect of surfactant formulation is a close second
elative to the temperature effect; the use of hydrocarbon surfac-
ants in RF6 reduced the foam lifetime by a factor of 17.5 at 50 ◦C
ompared to foams with fluorinated surfactants (AFFF) generated
sing an identical method of sparging. RF6 foam degrades in 3 min
hile AFFF foam degrades in 35 min  at 50 ◦C. This large difference in

oam degradation at elevated temperatures between AFFF and RF6
oam may  contribute to the differences in observed fire suppres-
ion performance between the two foams [5], especially because
he time scale of RF6 foam degradation is comparable to its fire-
xtinction time scale. As discussed previously, degradation of the
oam during firefighting reduces the foam’s ability to suppress the

ass transport of fuel vapor from the underlying liquid fuel pool to
he flames above. Both AFFF and RF6 foam exhibit an increased rate
f degradation at elevated fuel temperatures, and we believe that
his acceleration is due to an increase in the volume of fuel vapor at
he foam interface. At 35 ◦C and 50 ◦C, foam expansion was  observed
or AFFF foam but not for RF6 foam; however, both foams expanded
t room temperature. At temperatures higher than 50 ◦C, AFFF and
F6 foam no longer expand. The increased volume of fuel vapors
t the elevated fuel temperatures could be causing the bubbles to
upture at such an increased rate that foam expansion is not seen.

The data shown in Figs. 15 and 16 have significant error bars at
levated temperatures due to uneven bubble dynamics at the fuel-
oam interface. Similar to the room temperature interfacial images,
arge bubbles formed at the foam-fuel interface. At room tempera-
ure, these bubbles would coalesce throughout the foam leading
o an increased foam thickness represented as foam expansion.
owever, as temperatures increased, these bubbles formed more

apidly and, instead of coalescing throughout the foam layer leading
o expansion, these bubbles would rise to the surface of the foam.
he large bubble thickness was accounted for in the foam thickness
s seen in Fig. 15 for AFFF foam at 90 ◦C when the change in foam
hickness appears to increase between 4 and 6 min  and in Fig. 16
or RF6 foam at 75 ◦C and 90 ◦C when the change in foam thick-
ess becomes less steep around 1 and 2 min. The large error is the
esult of three different experiments with large bubbles forming at
ifferent points in time and location.

The increased foam degradation with increased fuel tempera-
ure shown in Figs. 15 and 16 can also be seen for the other two
uels, isooctane and MCH, at 50 ◦C, as shown in Figs. 17 and 18. The
oam lifetime for AFFF is affected by the increase in temperature
or all 3 fuels, but AFFF foam placed over isooctane still degrades

aster than AFFF foam placed over MCH  at elevated temperatures.
ig. 17 shows that AFFF foam lifetime is 62% and 24% smaller when
laced over isooctane and n-heptane respectively relative to that
Fig. 18. RF6 foam degradation versus time over heated fuels. Initial foam thickness
was 1.8–2 cm.

over MCH  at 50 ◦C fuel temperature. A similar trend is seen for RF6
foam over different fuels. But, RF6 foam lifetime is roughly 50%
smaller when placed over either isooctane or n-heptane relative to
that over MCH  at a fuel temperature of 50 ◦C as shown in Fig. 18.
The interactions between surfactant formulation and the fuel are
causing these differences between RF6 and AFFF foam, and remain
not well understood. However, the differences in foam degrada-
tion caused by different fuels shown in Figs. 17 and 18 appear to
be smaller relative to the effects of foam formulation when the
foams are generated by an identical sparging method. Comparing
Figs. 17 and 18 shows RF6 foam degrades faster by factors of 5.8,
10, and 7.6 for isooctane, n-heptane, and MCH  respectively relative
to AFFF foam at 50 ◦C fuel temperature.

3.3. Bubble dynamics at foam-fuel interface at elevated fuel
temperature

During the degradation experiments for some trials at elevated
temperatures, a single large bubble or “gap” formed between the
foam and fuel layer whose volume we  included in the measure-
ments of foam thickness. In this section, we discuss the “gap”
formation near the foam-fuel interface at elevated temperatures.
Fig. 19 displays images from two trials of AFFF foam over n-heptane
at 50 ◦C showing the “gap” formation.

These large bubbles were also observed by Osei-Bonsu et al. [17]
at room temperature in which large bubbles would form at random
areas of the foam column making foam thickness measurements
difficult to quantify. In Osei-Bonsu’s experiment, a surfactant solu-
tion was  mixed with a hydrocarbon and then sparged to create
a foam. In more recent experiments using a Hele-shaw column,
Osei-Bonsu et al. [21] reported large bubble formation at the foam-
oil interface. Osei-Bonsu’s work and our data show that the large
bubbles are caused by the presence of fuel. The foam thickness
recorded in the figures of this paper include the “gap” thickness,
but the “gap” thickness was also measured separately. For exam-
ple, Fig. 19(b) shows a large bubble on the left side of the beaker.
The foam thickness was inclusive of this large bubble, but because
the bubble has not grown to span the entire width of the container
forming a “gap”, the bubble diameter or “gap” thickness was  not
measured separately. However in Fig. 19(c), the “gap” has com-
pletely separated the foam and the fuel in which the size of this
gap over time is now being measured.

“Gap” formation was  visibly different from foam expansion. In
describing foam expansion, the entire foam thickness expanded
as seen in Fig. 5(b) without just a single large bubble causing the
expansion. “Gap” formation refers to instances where a single bub-
ble separated the foam layer from the fuel. Complete separation
below, we  plot the “gap” volume as a percentage of the total volume
recorded, which is calculated as the difference in volume between
the bottom surface of the foam layer sitting above the large bubble
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Fig. 19. Video images of two trials of AFFF on n-heptane at 50 ◦C. In both trials a large bubble between the foam and fuel formed around 20 min. The large bubble thickness
is  indicated by the black arrow on the left side of the beaker. Red line indicates the level o
as  the water level outside of the beaker. Initial foam layer thickness 1.8–2 cm above the
reader is referred to the web  version of this article.)
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ig. 20. “Gap” percentage of foam thickness over time of large bubble separation
etween foam and fuel for different trials of AFFF over heated fuel at 50 ◦C.

nd the surface of the fuel layer, divided by the total volume from
he fuel layer to the top of the foam surface. Fig. 20 plots the “gap”
olume for two out of three trials for AFFF over liquid n-heptane at
0 ◦C and two out of three trials for AFFF over liquid MCH  at 50 ◦C.

Fig. 20 shows that the “gap” formed at different times for each
rial with the “gap” comprising over 60% of the reported foam vol-
me  for the four trials with measurable “gap” formation. A bubble
eparating the foam from the fuel pool formed typically but not in
very experimental trial of AFFF foam over n-heptane or MCH  at
0 ◦C; Fig. 20 shows the typical behavior exhibited by the experi-
ental trials that did form a gap and even in cases when a “gap” was

ot formed, the resulting large bubble at the interface is still com-
arable to the container width as indicated by Fig. 19(b). This is a
ignificant volume that separates the foam from the fuel layer. Con-
idering the total thickness of the foam layer, the “gap” volume was
etween 40 and 50 mL.  We  postulated that the “gap” was actually a
ery large bubble and had formed from fuel vapors. In an immisci-
le system, we thought the fuel vapor formed at the interface and
ay  be building up pressure by accumulating in a bubble beneath

he foam. To test this, we inserted a pipette through the foam to
upture the “gap” beneath the foam, but inserting the pipette did
ot release any internal pressure which would have returned the

oam to the fuel surface. Instead, the foam remained above the “gap”
naffected by the insertion of the pipette. We  also used the pipette
o inject air into the “gap”. Even after pumping additional air into

he “gap”, the foam did not return to the fuel surface.

We also considered the air dissolved in the liquid fuel and how
he dissolved air may  contribute to the volume of the gap. At room
emperature, 25 mL  of air can be dissolved in 60 mL  of n-heptane
f the water bath outside of the beaker. Fuel is inside the beaker at the same height
 fuel layer. (For interpretation of the references to colour in this figure legend, the

[39]. However, the fuel was  preheated on a hot plate indicating
most of the dissolved air in the fuel would have been expelled
before the foam was  placed on the fuel surface, but there could
be a small amount of residual air at the elevated temperatures of
the fuel beneath the foam. Because of the water bath used to heat
the fuel, it was difficult to determine if bubbles were forming in
the fuel and traveling to the foam layer. We  believe the bulk of the
large bubble contains nitrogen from the ruptured bubbles at the
interface; nitrogen was used to generate the foams.

Regardless of the composition of the gas in large bubbles that
form the “gap”, we  believe the “gap” formation is due to interactions
between the foam and the glass beaker. Our collected data does
confirm that large bubbles form at the interface between the foam
and the fuel; however, the formation of a single bubble that would
completely separate the foam from the fuel interface would not be
seen in large scale testing. The gap formation is a result of the small
glass beakers used in this experiment where a large bubble can be
held in place for long times by the walls of the container. This is
supported by Magrabi et al. [7] who points out that foam is a non-
Newtonian fluid that can exhibit yield stress, allowing it to undergo
wall slip without deforming the column of foam.

To better understand the large bubbles forming at the foam-fuel
interface, we filmed interfacial videos at elevated temperatures.
Figs. 21 and 22 are time-lapse images of the interface between the
foams over n-heptane (Fig. 21(a–d) and Fig. 22(a–c)) and water
(Fig. 21(e–g) and Fig. 22(d–f)) at 50 ◦C for AFFF and RF6 foam
respectively. At higher temperatures, the vapor pressure of the
fuels increase and a greater amount of fuel vapor escapes from
the liquid fuel surface. At higher temperatures, the rate of bubble
growth occurs much more rapidly than at room temperature. In
Figs. 11 and 12 (room temperature), we  see large bubbles forming
around 30 min; but, at higher liquid temperatures, bubbles grow
in minutes. Comparing Figs. 21 and 22 with Figs. 11 and 12 shows
that the higher temperatures accelerate the bubble growth.

The bubble growth and coalescence process is difficult to see
in Figs. 21 and 22 because they are simply snapshots of the foam
surface at discrete times and do not show migration of bubbles
from behind. The videos show the dynamics a little more clearly.

Observation of the videos (see supplemental material) confirm the
accelerated growth of bubbles on n-heptane at 50 ◦C compared to
that at room temperature. Focusing closely on bubbles adjacent
to the foam-fuel interface, the videos showed that all bubbles at
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Fig. 21. Interfacial images of AFFF foam over n-heptane (a–d) and water (e–g) at 50 ◦C; interface position between the liquid and foam is shown by a red line on the left of
the  images. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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ig. 22. Interfacial images of RF6 foam over n-heptane (a–c) and water (d–f) at 50 ◦

mages. (For interpretation of the references to colour in this figure legend, the read

he interface, large and small, grew but at different rates. We  did
ot notice formation of new bubbles at the interface by the fuel
apor from the hot liquid. Slightly away from the interface the
ubbles remained unaffected during the same time period. The
ideos showed that at some point during the growth, the lamella
eparating adjacent bubbles ruptured and bubbles coalesced. This
rocess was more rapid in RF6 foam compared to AFFF foam. This

s how degradation is initiated at the interface. This cannot be seen
n Fig. 21(b) and Fig. 22(b) because the growth and coalescence
ad already taken place adjacent to the interface and other smaller
ubbles away from the interface migrated to the interface.

Even as the temperature increased, Figs. 21 and 22 show that
here is no drastic change in bubble diameter when the foams are
laced over hot water. In the images of foam placed over hot water,
he bubbles at the interface appear to be getting smaller. Because
he rapid bubble growth observed for foams placed over n-heptane

as not observed with hot water, the video observations of bubble

rowth and the increased rate of foam degradation must be induced
y n-heptane.
rface position between the liquid and foam is shown by a red line on the left of the
eferred to the web  version of this article.)

We  propose a possible mechanism for the role of fuel in foam
degradation that is consistent with our measurements and obser-
vations from the videos discussed above. As the fuel temperature
is raised, it forms more vapor at the fuel-foam interface. As the fuel
vapor enters the foam, it can cool and condense in the foam, which
is near room temperature. The condensed fuel can form an immis-
cible phase on the lamellae separating the bubbles. The additional
phase introduces instability in the lamellae and leads to lamellae
rupture. This instability has been characterized in research into
anti-foaming in which globules of oil/solid are introduced into the
foam to cause instability and defoaming [40,41]. They describe the
behavior of lamella rupturing in the presence of oil as oil bridging in
films. Oil can enter a foam film separating a film and create a bridge
of oil in a section of the film. The oil presence causes differences in
capillary pressure leading the films to stretch until rupture occurs.
Additionally, oil can be present in plateau borders. Oil presence

compresses plateau borders, increasing the rate of liquid drainage
in the foam, ultimately rupturing bubbles in the foam [40,41].
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Fig. 23. Foam degradation versus time for AFFF and RF6 foam at two  bubble diam-
K.M. Hinnant et al. / Colloids and Surfaces

Thus, as the fuel temperature is raised, the increased amount of
apor forms increased amounts of the condensed fuel in the foam.
he increased amount of condensed fuel could cause faster bubble
oalescence compared to room temperature. Increased coalescence
orms larger bubbles, which increases liquid drainage as shown by
ennedy et al. [8]. As time progresses, both condensed fuel and
apors can travel through the foam into the regions away from the
nterface and accelerate the naturally occurring coarsening process,

here gas can diffuse from relatively smaller bubbles to larger bub-
les due to the differences in the curvature and in the composition
f gases in adjacent bubbles which may  contain different amounts
f fuel. The increased coarsening of the bubbles and the associated
iquid drainage can lead to degradation of the foam with time [25].
oams placed on hot water will not lead to increased degradation
espite increased vapor pressure and condensation because liquid
ater is completely miscible with the liquid in the foam. Vapors of

uels (e.g., isooctane) with lower solubility in water tend to form
 separate liquid phase on the lamellae more quickly than fuels
e.g., MCH) with higher solubility in water. Due to the differences
n the solubility in water between fuels, isooctane can lead to faster
egradation compared to MCH, consistent with the experimental
ata presented in Figs. 17 and 18. RF6 foam has relatively larger
ubbles than AFFF foam just after they are generated as shown in
able 2. It is expected that differences in bubble diameter distri-
utions between AFFF and RF6 foam will only increase with time,
nd can lead to increased coalescence and degradation. In addition,
he solubility of a fuel can be affected by the surfactant formulation
nd is not well understood. These differences in solubility and bub-
le diameter distributions can lead to differences in coalescence of
ubbles and degradation for RF6 foam relative to AFFF foam.

.4. Effect of initial bubble diameter and expansion ratio

Earlier, we showed that surfactant formulation has a significant
ffect on degradation even when the foams are generated by an
dentical sparging method. The effect of formulation on degrada-
ion includes the differences in foam properties induced by changes
n the surfactant formulation; the surfactant formulation affects
oam properties such as expansion ratio (or liquid content) and
ubble diameter as shown in Tables 4 and 5. The average initial
ubble diameters were different between AFFF and RF6 foam: RF6
oam had a bubble diameter 36% larger than that of AFFF foam.
o examine the impact of average initial bubble diameter on foam
egradation, we altered the average initial bubble diameter of AFFF
nd RF6 foam by changing the pore size of the sparger used to
enerate foam.

By reducing the pore sizes of the sparger from 170–210 �m to
0–20 �m used to generate the foam (see Fig. 1), we  were able
o reduce the average bubble diameter by more than a factor of 2;
rom 0.54 mm to 0.3 mm for AFFF foam and from 0.7 mm to 0.26 mm
or RF6 foam as shown Table 5. The bubble diameter distributions
re expected to be close to those reported by Conroy et al. [42]
ho used the same generation method described in Section 2.4 but
ith a sparger having pore sizes 25–50 �m.  Their bubble diameter
istributions for RF6 foam also show a bimodal distribution unlike
FFF foam, similar to Figs. 2 and 3. But, changing the pore sizes of

he sparger also affected the expansion ratio by almost a factor of
 as shown in Table 5 which tabulates the expansion ratios of the
oam for the two spargers. It is possible that altering the bubble
iameter alters the liquid in the foam; therefore, the expansion
atio of the foam is affected by changing bubble diameter consistent
ith the observation reported by Osei-Bonsu et al. [21]. Osei-Bonsu
t al. [21] used different pore size glass discs to generate foams
ith different bubble diameters and found that the reduced bubble
iameter resulted in reduced expansion ratio. Both expansion ratio
nd bubble diameter can affect liquid drainage in foam. The time
eters over heated n-heptane. Initial foam thickness was 1.8–2 cm. 170–210 �m and
10–20 �m spargers were used to generate bubbles. “BD” in the legend refers to the
bubble diameter of the foam and “ER” refers to the expansion ratio of the foam.

for 25% liquid drainage for foam produced with a 10–20 �m pore
sparger is expected to be smaller than 260 s in Fig. 4 for AFFF foam,
which is for a sprager having 170–210 �m pore sizes. Conroy et al.
[42] reports an expansion ratio of 5.7 for AFFF foam generated with
a 25–50 �m sparger, similar to the expansion ratio of AFFF foam
generated in our work with a 10–20 �m sparger. The 25% drainage
time for AFFF foam generated with a 25–50 �m (24 s) reported by
Conroy et al. [42] may  be close in value to the 25% drainage time
for AFFF foam generated with a 10–20 �m sparger in this report.

Fig. 23 shows the change in foam layer thickness for AFFF and
RF6 foam placed over 50 ◦C n-heptane with time for two different
bubble diameters and expansion ratios. Fig. 23 shows that reducing
the bubble diameter and expansion ratio reduces degradation both
for RF6 and AFFF foam. As the bubble diameter is reduced by a
factor of 2.7 for RF6, foam lifetime is increased by more than a factor
of 3. Similarly, as the bubble diameter is reduced by a factor of 2,
AFFF foam lifetime increased by a factor of 2. This is consistent with
the observations of Osei-Bonsu et al. [21], who  reported increased
tolerance of foam to oil destruction at a foam-oil interface with
reduced bubble diameter and expansion ratio in a Hele-Shaw cell
at room temperature. They noted that reduced bubble diameters
formed thicker lamellae, which appeared to be more resistant to
destabilization and rupture by silicone oil.

Clearly, a significant change in bubble diameter is needed to
change the degradation significantly. As explained by Kennedy et al.
[8], larger bubbles result in faster drainage, which may  increase
the rate of foam degradation. Even though the 10–20 �m sparger
produced AFFF and RF6 foam at similar bubble diameters and at
similar expansion ratios, the foam lifetime of AFFF is still sig-
nificantly longer than RF6 foam. Therefore, differences in bubble
diameter cannot explain the large differences, as much as a factor
of 10, measured in foam lifetime between AFFF and RF6 shown in
Figs. 15 and 16. A further examination of property differences in
surfactant formulation and in the interactions between the surfac-
tant formulation and fuel is needed to explain the differences in
degradation between AFFF and RF6 foam more comprehensively.
However, Fig. 23 clearly shows that reducing bubble diameter
and/or expansion ratio can be a way  to reduce degradation of foams.

4. Conclusions

Foam degradation was measured when a roughly 2 cm thick
foam layer was  placed over different fuels and at different fuel
temperatures to determine the effect of fuel on foam degrada-
tion. This research sought to isolate the effect of fuel on foam
degradation to better understand differences between fluorinated

and fluorine-free firefighting foams that may  impact pool fire sup-
pression performance. We  determined that the presence of fuel
reduces foam lifetime significantly relative to that on water and that
the reduction occurs faster for fluorine-free RF6 foam compared
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o fluorinated AFFF foam. We  examined the effects of surfactant
ormulations (SDS, RF6, and AFFF), different fuels (isooctane, n-
eptane, and MCH), and fuel temperature on degradation of foams.

Data collected at room temperature shows that foam degrada-
ion naturally occurs on very long time scales (10–20 h) and that
F6 foam degraded in a similar time frame to AFFF foam when
laced in a glass container without the exposure to fuel or water.

 water layer placed underneath the foam prolongs the duration
f foam lifetime for AFFF and RF6, but not for SDS. The presence of
-heptane at room temperature under AFFF and RF6 foams leads
o an increased rate of foam degradation compared to degradation
n the control (no liquid under the foam) and water experiment.
hese experiments show that foam degradation depends on the
iquid surface it is covering.

Foam placed over heated fuel degraded significantly faster than
oam above room temperature fuel. Foam lifetimes were in hours
t room temperature, and only minutes over heated fuel. The effect
f fuel temperature is by far the largest on foam degradation, fol-
owed by the effects of surfactant formulation, type of fuel, and
ubble diameter or expansion ratio. Comparing foam degradation
etween hot fuel and hot water, we show that the effect of fuel
emperature is not because of heat transfer to foam; it is due to the
ncreased vapor pressure of a hydrocarbon liquid. RF6 foam placed
ver heated fuel degrades in approximately 3 min  while AFFF foam
egrades in approximately 35 min. AFFF and RF6 foam contain fluo-
inated and fluorine-free surfactants and different additives; which
an affect the solubility of fuel in the aqueous phase of the foam,
he bubble diameter, and the expansion ratio despite the identi-
al sparging method used to generate the foams. Reducing sparger
ore size reduced bubble diameter by a factor of 2 and decreased the
xpansion ratio, which increased foam lifetime by a factor of 2 for
oth the foams. However, RF6 foam degraded faster than AFFF foam
or the same average bubble diameter and expansion ratio. Both RF6
nd AFFF foam degrade faster when placed on isooctane, followed
y n-heptane and MCH, which have similar vapor pressures but
iffer in solubility in water significantly.

Video recording of the foam adjacent to the fuel surface show
he formation of large bubbles at the interface between the fuel and
oam. These large bubbles are not seen when foam is placed over
ater. These bubbles grow rapidly due to lamella rupture, which

eads to the formation of even larger bubbles. As time progresses,
arge bubbles lead to faster degradation of the entire foam. This
ehavior near the interface differs from that of classical coarsen-

ng through diffusion in which larger bubbles become larger at the
xpense of smaller bubbles.

We proposed a possible mechanism for foam degradation that
s consistent with collected measurements. Fuel travels through
he foam as vapor in the foam bubbles and as condensed liquid
n the foam lamella. As fuel transports through the foam, the con-
ensed fuel, with low solubility in water, may  create a separate
hase along the lamella instead of dissolving into the lamella. This
eparate phase destabilizes the lamella and can lead to lamella rup-
ure. More soluble fuels will more readily dissolve into the lamella
nd continue to be transported through the foam with little lamella
estabilization. As the lamellae rupture, adjacent bubbles coalesce
nd become larger. As time passes, larger bubbles cause a foam
o drain liquid faster than foams with smaller bubbles [8]. This
ncreased drainage rate can increase the rate of foam degradation
25]. Further studies are needed to quantify the effects of sur-
actant formulation on fuel solubility, fuel transport, and bubble
ynamics in foams to verify the proposed mechanism and espe-
ially to explain differences between the degradation of RF6 and

FFF foam. Thus, the reasons remain unclear for the difference

n foam degradation rates between fluorinated and fluorine-free
oams. Nevertheless, our findings show faster fuel-induced degra-

[
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dation of RF6 foam may  contribute significantly to its inferior fire
suppression performance relative to AFFF foam.
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