Interactions of Fire-fighting Foam with Hydrocarbon Fuel

Chang Jho Dynax Corporation, NY USA

Fuel contamination problem of low expansion foams for Class B fires is a serious issue, but it is unavoidable, particularly under direct or forceful applications .

Test Standards/Specs and Modes of Foam Application				
Standard/Spec	Test Fuel	Application Mode		
EN 1568	Heptane	Forceful	Gentle	
UL-162	Heptane	Forceful		
US Mil-F-24385F	Gasoline → Heptane?	Forceful		
ICAO A/B/(C)	Kerosene (Jet A)	Forceful		

2:00.04



The fuel contamination problem or "fuel pickup" problem leads to:

- Premature breakdown of foam blankets
- Flicker fires Poor extinguishment

For experimental details see: Chang Jho, International Fire Fighter, 41, Issue 36 (2012)

Foam Flammability Test Results

Table 1. Comparison of Flammability of Fuel-Contaminated Fluorine-free Foams and AFFF/AR-AFFF							
Tost Foom Agont	Flammability and Sustained Burning						
Test Foam Agent	Iso-Octane Gasoline n-Heptane			Cyclohexane			
Fluorine-Free Foam (F3) Agents							
Product A (6%)							
Product B (3%/6%)	All ignited and burned away						
Product C (3%)							
Product D (3%/3%)							
Product E (3%/6%)							
AFFF/AR-AFFF Agents							
Product 1 (AFFF-3%)	None ignited or burned at all						
Product 2-AR-AFFF-3%/3%							
Product 3-AR-AFFF-3%/3%							
Product 4-AR-AFFF-1%/3%							

Note: Due to its high (>38°C) flash point, Jet A1-contaminated foams could not be ignited at ambient temperature.

Visit <u>www.Youtube.com</u>: "Flammable Firefighting Foams"

Foam Stability Test Results

Table 2. Stability Test Results of Fuel-Contaminated Foams						
Test Foam Agent	50% Foam Collapse Time (min)					
	Iso-Octane	Gasoline	n-Heptane	Cyclohexane	Jet A1	
Fluorine-Free Foam (F3)	Fluorine-Free Foam (F3) Agents					
Product A (6%)	>30	4.6	13.4	9.5	>30	
Product B (3%/6%)	>30	9.5	7.1	6.3	>30	
Product C (3%)	>30	4.5	23.0	8.7	>30	
Product D (3%/3%)	12.8	5.5	3.7	7.4	>30	
Product E (3%/6%)	14.1	6.7	9.3	8.7	20	
AFFF/AR-AFFF Agents						
Product 1 (AFFF-3%)						
Product 2 (AR-AFFF-3%/3%)	>20					
Product 3 (AR-AFFF-3%/3%)						
Product 4 (AR-AFFF-1%/3%)						

Visit <u>www.Youtube.com</u>: "Flammable Firefighting Foams"

Reebok 2013

Why did all the Fluorine-free Foams become flammable when contaminated with hydrocarbon fuel while all AFFF/AR-AFFF Foams did not??

Spreading and Sealability of Foam Solution over Fuel Spreading of Fuel over Foam Solution

"Upside Down Screw Test"

Spreading and Sealability Test Results: Foam Solution over Fuel

Table 3. Spreading and Sealability Tests of Foam Solution over Fuel						
Test Foam Agent	Foam Solution over Fuel					
	Gasoline	n-Heptane	Iso-Octane*	Cyclohexane	Jet A1	
Fluorine-Free Foam (F3) A	gents					
Product A (6%)						
Product B (3%/6%)	None of the foam solutions spread or sealed (All burned)					
Product C (3%)						
Product D (3%/3%)						
Product E (3%/6%)						
AFFF/AR-AFFF Agents						
Product 1 (AFFF-3%)						
Product 2 (AR-AFFF-3%/3%)	All foam solutions spread and sealed					
Product 3 (AR-AFFF-3%/3%)	(No burning)					
Product 4 (AR-AFFF-1%/3%)						
*Spreading on Iso-Octane was hard to detect, but sealing was confirmed by no burning.						

Spreading Test Results: Fuel over Foam Solution

Table 4. Spreading Tests of Fuel over Foam Solution						
Test Foam Agent	Fuel over Foam Solution					
	Iso-Octane	Gasoline	n-Heptane	Cyclohexane	Jet A1	
Fluorine-Free Foam (F3) A	Agents					
Product A (6%)	Spreading (30%)*	Spreading (100%)	Spreading (40%)	Spreading (20%)	Spreading (20%)	
Product B (3%/6%)	Spreading (40%)	Spreading (80%)	Spreading (20%)	Spreading (15%)	No Spreading	
Product C (3%)	Spreading (20%)	Spreading (100%)	Spreading (20%)	Spreading (20%)	Spreading (20%)	
Product D (3%/3%)	Spreading (40%)	Spreading (80%)	Spreading (20%)	Spreading (15%)	Spreading (15%)	
Product E (3%/6%)	Spreading (20%)	Spreading (80%)	Spreading (15%)	Spreading (15%)	No Spreading	
AFFF/AR-AFFF Agents						
Product 1 (AFFF-3%)	None of the fuels spread					
Product 2 (AR-AFFF-3%/3%)						
Product 3 (AR-AFFF-3%/3%)	None of the fuels spread					
Product 4 (AR-AFFF-1%/3%)						
* Numbers in parentheses Indicate % spread area.						

Some Basic Concepts about Fire-fighting Foam

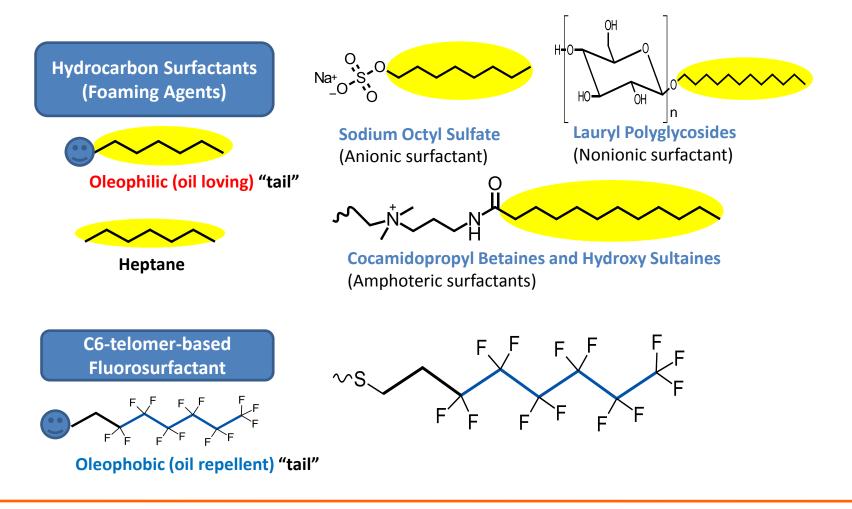
Foam: A mass of air-filled bubbles. To create a stable foam, foam solution must contain a foaming agent which is a **SURFACTANT** (Surface Active Agent).

Surfactant: A chemical substance containing a balance of both oleophilic (oil-loving) and hydrophilic (water-loving) groups. Due to this structural property, surfactant molecules adsorb (aggregate) spontaneously onto the bubble surface.

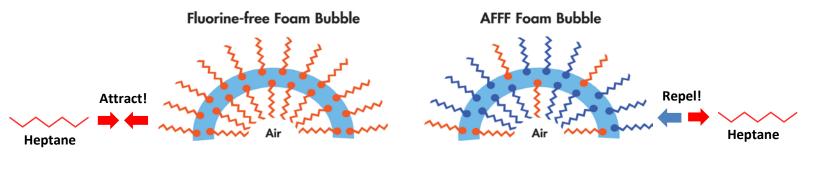
Two Types of Surfactants Used in Fire-fighting Foams Hydrocarbon Surfactants (used mainly as foaming agent)

> "Man-made" Hydrocarbon Surfactants: Synthetic detergents "Natural" Hydrocarbon Surfactants: Alkyl polyglycosides, Protein hydrolysates

Fluorosurfactants*(used mainly in aqueous film-forming foams)


PFOS-based fluorosurfactants (banned and no longer used) Fluorotelomer-based surfactants

*contain Oleophobic (oil-repellent) and Hydrophilic groups


Reebok 2013

Examples of Hydrocarbon- and Fluoro-surfactants Used in Fire-fighting Foams

Interactions of Fuel with Surfactant Molecules on the Foam Bubble Surface

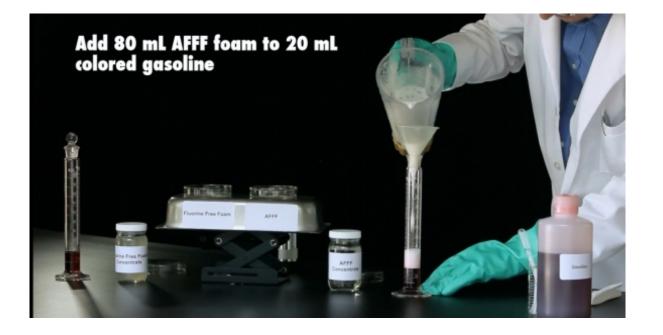
Hydrocarbon Surfactant (Hydrocarbon tails: Oleophilic)
Fluorosurfactant (Fluorocarbon tails: Oleophobic)

Hydrocarbon surfactants attract hydrocarbon fuels Fluorosurfactants repel hydrocarbon fuels

Conclusions:

F3 Foams

- All F3 foams tested became flammable and burned away when contaminated with a hydrocarbon fuel.
- This fuel contamination was also found to degrade the stability of F3 foams.
- Test results proved that the oleophilicity (fuel attraction) of hydrocarbon surfactant foaming agents causes flammability and degradation of fuelcontaminated F3 foams.
- This oleophilicity <u>fundamentally</u> limits what can be achieved to reduce the fuel contamination problem in all F3 foams.
- The positive spreadability of fuel on F3 foaming solutions is as important as their lack of film formation on fuel in understanding the flammability of fuel contaminated F3 foams.


Conclusions:

AFFF Foams

- None of the AFFF foams tested became flammable when contaminated with a hydrocarbon fuel.
- ***** Effects of the fuel contamination on the stability of AFFF foams were minimal.
- The oleophobicity (fuel repellency) of fluorosurfactants reduces fuel contamination of AFFF foams and resists flammability, while maintaining foam stability.
- The positive spreadability of AFFF foam solutions on fuel is critical in protecting the contaminated foam from ignition and premature degradation.
- The negative spreadability of fuel on AFFF foam solutions is as important as their positive spreadability on fuel for AFFF foam's resistance to fuel contamination and flammability.
- Further research is needed to better understand the quantitative relationship between the surface/interfacial tensions and the distribution of fuel particles in fuel contaminated foams.

Video: Demonstration of Flammability of Fuel-contaminated Foams

Thank you!

Dynax Contact Info:

Chang Jho, 79 Westchester Avenue, PO Box 285, Pound Ridge, NY 10576 USA Tel: 914 764-0202 Fax: 914 -764-0533 e-mail: chang.jho@dynaxcorp.com

