Recent Developments in

6:2 Fluorotelomer Surfactants and Foam Stabilizers

Eduard Kleiner and Chang Jho Dynax Corporation, NY USA

From

PFOS/PFOA Fluorosurfactants

to

6:2 Fluorotelomer Surfactants,

which biodegrade into

6:2 Fluorotelomer Sulfonate (6:2 FTS),

used as

Film Formers (Non-polymeric) Fuel Repellents (Polymeric) Foam Stabilizers (Polymeric)

From PFOS/PFOA to 6:2 Fluorotelomer Surfactants

Year	Events	Reference
1963	Tuve + Jablonsky, US NRL, 3M/NRL Collaboration PFOS + PFOA type fluorosurfactants Light Water + Purple K (Twin Agents) (no hydrocarbon surfactants) MIL-F-23905 (11/1/63) (Fresh water only)	US 3,258,423 (filed 9/4/63) GB 1,070,289 (filed 9/3/64)
1964	Ratzer, Chemical Concentrates: Use of Hydrocarbon Surfactants with fluorosurfactants in AFFF	Campobello Foam Meeting (10/11-13/64), Published in "Foam" Oct. 1964, Nr. 24
1967	USS Forrestal Fire	Protein Foam; 134 dead and 21 aircrafts destroyed
1969	3M Francen Patents: Use of Hydrocarbon Surfactants with Fluorosurfactants in AFFF	US 3,562.156 (filed 6/12/69) US 3,772,195 (filed 2/5/71): Invalidated 1980
1969	MIL-F-24385 (6% AFFF) (Fresh & Seawater)	Seawater tests introduced
1972–75	Atochem, France & Ciba-Geigy, USA: 6:2/8:2 and 6:2 FT-Surfacatants for AFFF Agents Pilot plant production for AFFF agent tests at Eau et Feu (Atochem) and Ansul (Ciba-Geigy)	"Forafac" (Atochem) and "Lodyne" (Ciba-Geigy)
1978	DC-10 Crash Fire at LAX (First major use of 3M Light Water)	196 lives saved out of 200
1982–	Large selections of 6:2 FT-Surfactants available to AFFF agent producers	6:2 FT-surfactants: C6 (~95 to 97%) + C4 & C8
1992	MIL-F-24385F (3% & 6% AFFF)	3% requirements introduced

USS Forrestal Fire – 29 July 1967

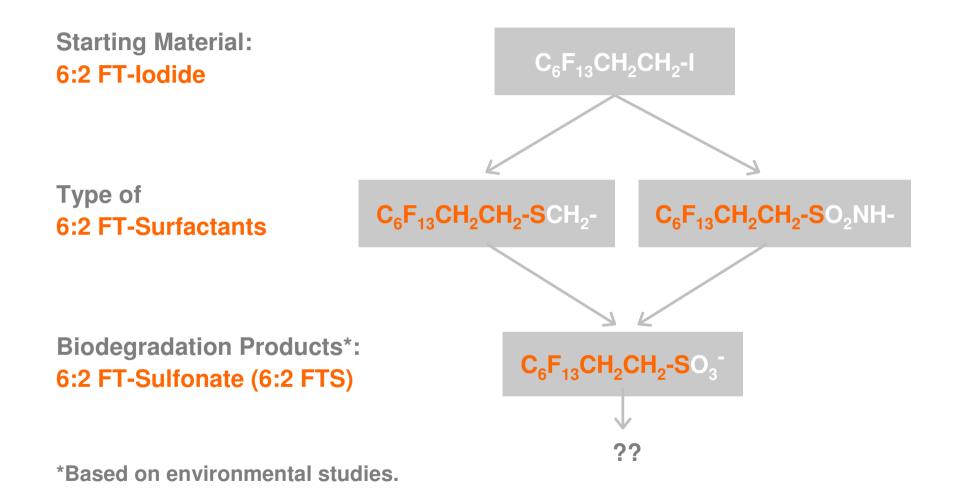
DC-10 Crash Fire at LAX – 1 March 1978

Environmental Studies of AFFF Agents

Sampling Site	Source of AFFF	Major Components ¹
2004 US Study (ground water)*		
Naval Air Station, Fallon, NE	3M	PFOS + PFOA
Tyndall AFB, FL	3M + Ansul	PFOS + PFOA +
Wurtsmith AFB, MI	3M + Ansul	6:2 FTS ² /4:2 & 8:2 FTS
2008 Norwegian Study (soil)**		
Mongstad Oil Refinery	National Foam + 3M	
Solberg Scandinavian AS	3M + DuPont(?)	PFOS + PFOA + 6:2 FTS
Gardermoen Airport	3M + DuPont (?)	
Rygge Air Station	3M	PFOS + PFOA

*Jennifer Field, et. al., Environ. Sci. Technol. 2004, 38, 1828.

**Norwegian Pollution Control Authority (SFT) Report (2008)


¹PFOS and PFOA include other homologs.

²Ansul AFFF derived from Lodyne fluorosurfactants (Ciba-Geigy) contained >95% 6:2 FT-surfactants.

6:2FTS was never used in AFFF agents.

Chemistry and Biodegradation of 6:2 Fluorotelomer Surfactants

Foam Stabilizers for AR-AFFF/AR-FFFP Agents

Year	Producer	Foam Stabilizer	AR-AFFF/AR-FFFP
1973	National Foam	Polysaccharides (PS)	3x6 (High viscosity)
1990	Ciba-Geigy	Lodyne K90'90*	3x3 (Low viscosity) AR-AFFF/AR-FFFP
1995	Dynax	DX5011 6:2 Fluorotelomer Polymeric Surfactant	3x3 (Lower viscosity) AR-AFFF & AR-FFFP
1998-99	DuPont	Forafac 1210* Forafac 1268*	AR-FFFP AR-AFFF
2000	Ciba Specialty Chem	Lodyne 5100*	AR-AFFF/AR-FFFP
2008	Dynax	DX5022 Only 6:2 Fluorotelomer Foam Stabilizer that biodegrades to 6:2 FTS	3x3, 1x1, 0.5x0.5 Development of semi-Newtonian AR-AFFF & AR-FFFP agents without PS

* Fluorotelomer polymeric surfactant

Fluorosurfactants for Fluoroprotein Foam Agents

Year	Events
1968	Chubb Fire introduces FP foams based on ICI Monflor MD 313: Used by all FP agent producers.
1973	Regular Ministry Supply Contracts for Monflor MD 313-based FP agents
1980	Ciba-Geigy introduces Lodyne K78'220(B) as drop-in replacement for Monflor MD 313. ICI withdraws Monflor MD 313. K78'220(B) becomes THE ONLY GAME IN TOWN!
1990	Lodyne K78'220B, an 8:2 FT-Surfactant, used as fuel repellent in AFFF and FFFP agents.
2009	Dynax DX2200 and Chemguard FS-220B (successors of Lodyne K78'220B): STILL THE ONLY GAME IN TOWN!
2009	No Fluorine-free FP yet!!
2010/15	Phase-out period for 8:2 FT-Surfactants.

Note: Use levels of K78'220B (40%) in 3% FP: 0.3 - 0.6% (0.02 - 0.05%F)

Fluorosurfactants – Key Events 2002 – 2015

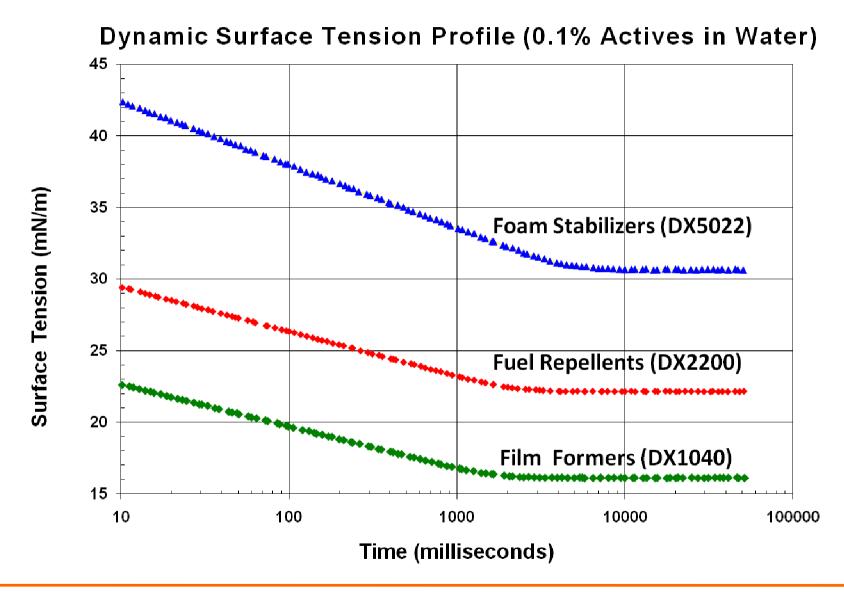
Year	Events
2002	DuPont acquires the Atofina fluorotelomer business.
2003	Chemguard acquires Ciba Specialty Chemicals Lodyne fluorosurfactant business.
2004	Dynax introduces 6:2 Lodyne fluorosurfactants with > 99.5% C6
2005	Chemguard introduces modified Lodyne fluorosurfactants with ~72% C6 and ~28% C8/C10.
2008	Dynax introduces DX5022, a second generation foam stabilizer.
2008	DuPont announces introduction of short-chain fluorochemicals meeting US EPA Global 2010/2015 PFOA Stewardship Program objectives.
2009	DuPont announces that 45 Capstone products are on the market by mid-2009
2010/15	EPA's Global 2010/2015 PFOA Stewardship Program: PFOA and higher homolog acids and their precursor chemicals should be reduced by 95% no later than 2010, and eliminated no later than 2015 from facility emissions and in product content.

6:2 FT-Surfactants for Fire Fighting Foam Agents

Film Formers for AFFF/FFP:

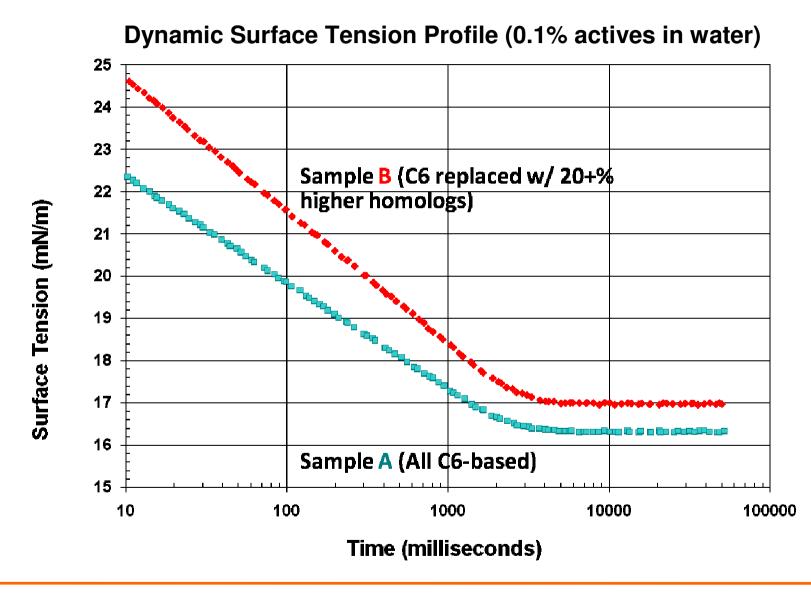
- S Non-polymeric
- S Fast equilibrating (high diffusion rate) (C6 vs C8)
- S Low equilibrium & dynamic surface tension (C6 vs C8)

Fuel Repellents for FP:


- S Polymeric (oligomeric)
- S Oleophobicity (fuel repellent) (C8 vs C6)
- S Slow equilibrating (low diffusion rate)

Foam Stabilizers for AR-AFFF/FFFP

- S Polymeric
- Solvophobicity (solvent repellent)
- S Slow equilibrating (low diffusion rate)



Three Types of Fluorosurfactants

C6 vs C6/C8-based Non-ionic Fluorotelomer Surfactants

US Air Force SBIR Phase 1 & 2 Contracts Awarded to Dynax in 1993 & 1994

"Improved Formulation of Fire Fighting Agents for Hydrocarbon Fuel Fires"

Improved Extinguishment

- + Improved Foam Life and Burnback Resistance
- + Lower Levels of Fluorosurfactants
- + Lower Toxicity on Aquatic Life Forms
- + Elimination of Butyl Carbitol (SARA Title III Section 313)

= Environmentally More Benign (EMB) AFFF Agents

3% AFFF Agents on US QPL List in 1993:

Highest Fluorine Content: 1.8%F (3M Light Water FC-203CF) Lowest Fluorine Content: 0.85%F (NF Air-O-Water 3EM)

Proposed MIL-F-24385 Specification Changes

Maximum Fluorine Content Spreading Coefficient Toxicity, LC₅₀, mg/L (Min) COD, mg/L (Max) BOD₂₀/COD (Min)

0.85% Increase (3.0 5.0) Increase (50 750) Decrease (1,000K 600K) Leave at 0.65*

*Subject to definition of BOD/COD ratio

In 1993, the issues of PFOS/PFOA and C6 vs C8/C10 telomer type fluorosurfactants did not exist.

Dynax Proposal for New MIL-F-Fire Performance Specifications Based on US Air Force SBIR Contract Report (1996)

3% AFFF Agents	Solution	MIL-F-24385F	Proposed Spec*
Foam Expansion (min)	3.0% 1.5%	5.0 None	6.5 6.0
¼ Drain Time (min, min)	3.0% 1.5%	2.5 None	4.0 3.0
28 ft ² Fire Tests (Fresh & Seawater)			
Extinguishment time (sec, max)	3.0% 1.5%	30 45	Delete 40
Burnback (sec, min)	3.0% 1.5%	360 300	Delete 360
50 ft ² Fire Tests (Seawater only)			
Extinguishment time (sec, max)	3.0%	50	45
Burnback (sec, min)	3.0%	360	420

*This proposal is based on a Dynax "Environmentally More Benign" 3% AFFF formulation containing 0.85%F (vs. 1.8%F for 3M Light Water FC-203CF)

Dynax 6:2 Fluorotelomer Surfactants and Foam Stabilizers

Dynax Product	Ionic Type		Agent Application G		
Fluorosurfactants		AFFF	AR-AFFF	FFFP	AR-FFFP
DX1030	Anionic	•	•		
DX1040	Anionic	•	•		
DX1080	Nonionic	•	•	•	•
DX1090	Nonionic	•	•	•	•
DX1025*	Anionic	•	•		
Foam Stabilizers					
DX5011	Anionic		•		•
DX5022	Anionic		•		•
DX5065**	Anionic		•		•
DX5066**	Anionic		•		•

*Blends of fluorosurfactants **Blend of Fluorosurfactants and Foam Stabilizers

4Th Reebok Foam Seminar, Bolton, UK 6 – 7 July 2009

Thank you!

Dynax Contact Info: Chang Jho, 79 Westchester Avenue, Pound Ridge, NY 10576 USA Tel: 914 764-0202 Fax: 914 -764-0533 e-mail: chang.jho@dynaxcorp.com

