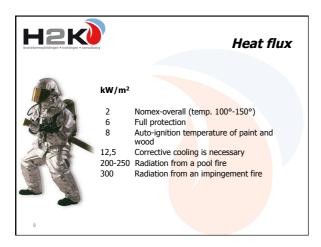
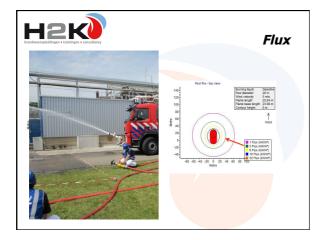


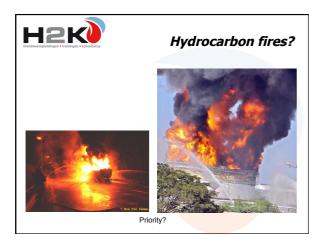
- Thermal resistance
- Polar and non-polar fuels
- Oil phobic
- Anti static
- Sub-surface injection
- US and international patents pending

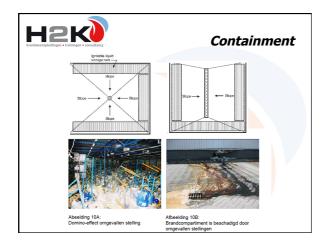


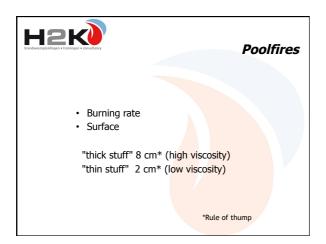


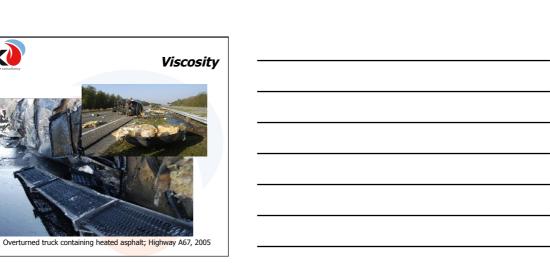


2









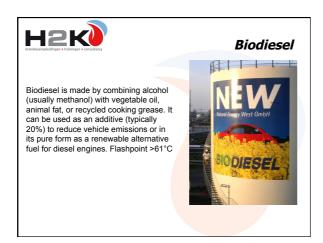
ERECT Constitutes		Burning ra	tes
Product	Grow heatwave mm/hr	Kg/m²/sec	
Light oils		152-305	
Medium oils		127-203	
Heavy oils	76-508	76-127	
Light crude	381-889	102-457	
Heavy crude	76-508	76-127	

	Sultancy		Burning ra
Product	mm/min.	Kg/m²/sec	Density kg/m ³
LNG	14	0,11	460
LPG	13	0,13	585
Gasoline	5	0,055	740
MEK	4	0,05	800
Kerosene	3	0,06	820
Fuel Oil	2	0,05	900

Chemical fires are polar solvents fires

Chemical fires are **polar solvents** fires. Polar solvents include O or N atoms or halogenes : Cl, Br, F or I. Their characteristic is their affinity for water. We can identify some large families : Alcohols: méthanol, éthanol, isopropanol... Ketones and aldehydes: acetone, acetaldehyde, methylethylKetone, MIBK... Esters: Ethyl acetate... Ethers: diethylether, MTBE, THF... Glycols: combination 'alcohol + ether' : MEG, MPG, Butoxyethanol, butylcarbitol... Amines: trimethylamine...

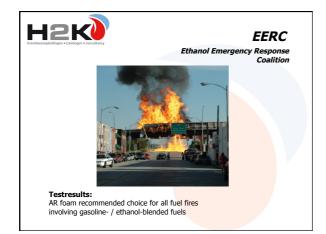
Being "water lovers", they can only be extinguished with Alcohol Resistant foams.



H2K

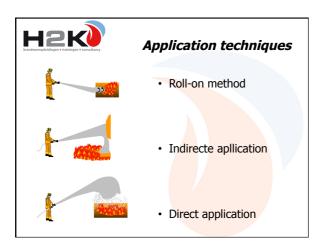
than regular gasoline.

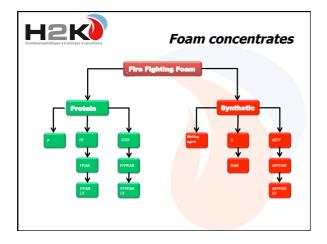
Ethanol is mostly used as blending agent with gasoline to increase octane and cut down carbon monoxide and other smog-causing emissions. Some vehicles are designed to run on E85, an alternative fuel with much higher ethanol content



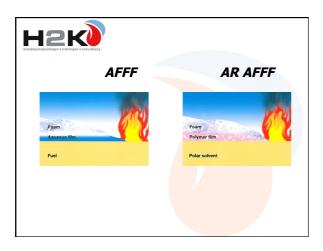
8








Major foam manufacturer's replace C8 foam concentrates


for C6 foam concentrates • By degration of C8 formation of PFOA

 Existing dat shows that shorter-chain compounds (C6 and below) have a lower potential for toxicity and boiaccumulation

	Foam concentrates
Fluorinated foam concentrate	Fluorine-free foam concentrate
AFFF	P
Aqueous film forming foams	Protein foam
AFFF (AR)	P (AR)
Alcohol resistant AFFF	Alcohol resistant P
FP	S
Fluor protein foam	Synthetisch schuim
FP (AR)	S (AR)
Alcohol resistant FP	Alcohol resistant S
FFFP	
Film forming FP	
FFFP (AR)	
Alcohol resistant FFFP	

ajax

6 Vmin 4 Vmin 7 Vmin

6 Vmin 6 Vmin 6 Vmin 6 Vmin 6 Vmin 6 Vmin 6 Vmin 6 Vmin 6 Vmin 6 Vmin

5 Vml

3 Vmin 6 Vmin 3 Vmin 3 Vmin 6 Vmin 6 Vmin

3 lýmin 7 lýmin 6 lýmin 4 lýmin 7 lýmin

n-Propylacetaat Ethylacetaat Virvlacetaat 109-60-4 141-75-6 105-05

67-56-1 64-17-5 71-36-1 75-63-1 75-65-0 64-17-5 71-23-5

64-17-5

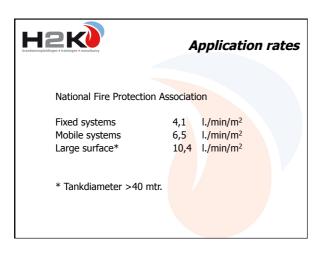
98-83-9 100-42-5 105-85-3 1330-20-3

143-22-8 57-55-6 95-48-7

Aceton 67-54-1 Methylisobutyiketon 105-10-1 Cyctohexanon 105-94-1 Methylethylketon 73-93-3

H2K Applicationrates

	tionrate		
Productgroep	Product	CAS nr (indien bekend)	Application rate
Alkenen	Octeen	111-00-0	4 Vmin
	Hexeen	592-41-6	4 Umin
	Directory in the second	108.00.1	a the fee
Alifaten	Disobutyleen Cyclohexaan	107-39-1 110-82-7	3 Vmin 4 Vmin
	Hexaan	110-02-7	4 Imin
	Heptaan	142-82-5	3 l/min
	Tropianari	I TRATINATION	3 mini
Propyleen axide	Propyleen oxide	75-56-9	ð l/min
Ethers	Methyl t-Butylether	1034-04-4	6 l/min
201012	Ethyl t-Buthylether	637-92-3	6 l/min
	Tetrahydrofuraan	109-99-9	ð límin
Amines	Kerocom Piba	64771-72-8	3 l/min
	Polyisobutalamine	64742-48-9	3 l/min
Methacrylaten	Methyl-methacrylaat	00-02-0	4 limin
Methacrylaten	Methyl-methacrylaat	00-02-0	4 umin
Phtalaten	Dioctylphataat	117-01-7	3 l/min
Prizzalen	owyghalaat	111-501-7	3
[



- Blusduur 30 minuten
- Schuimstraalpijpen van 800L/min.

Vragen

- Hoeveel straalpijpen nodig?
- Hoeveel schuimconcentraat nodig voor 30 min. blussing

