
FATE AND TRANSPORT MODELING OF PFOS IN A FRACTURED CHALK AQUIFER TOWARDS A LARGE SCALE DRINKING WATER ABSTRACTION

lan Ross, Ph.D., Arcadis, Leeds, United Kingdom Jeff Burdick, Arcadis, Newtown, PA Jeffrey McDonough, Arcadis, San Francisco, CA Erika Houtz, Ph.D., Arcadis, San Francisco, CA Jonathan Miles Ph.D., Arcadis, Leeds, United Kingdom

Contents

ARCADIS Design & Consultancy for natural and built assets

- Conceptual site models
- Risk based and sustainable contaminated land management
- Buncefield Fire
- Guernsey
- PFCs to PFASs
- Regulatory Climate
- PFASs distribution
- News

PFAS Introduction

PFAS comprises many thousands of compounds –multiple sources

Advanced analytical methods are being adopted to measure PFAS

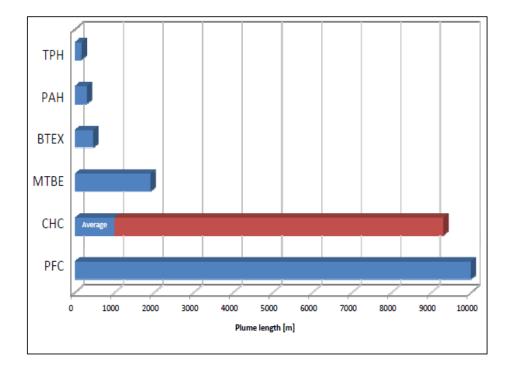
PFAS are impacting drinking water worldwide

None of the PFASs biodegrade, some biotransform to daughter compounds that are extremely persistent

Some PFAS are classed as persistent organic pollutants

Dramatically increasing regulatory concern

© Arcadis 2017


PFAS - Properties and Implications

PFAS plumes are generally longer as PFAS are generally:

- Highly soluble
- Low K_{oc}
- Recalcitrant extreme persistence
- Mostly Anionic

Chemical Properties	PCB (Arochlor 1260)	PFOA	PFOS	TCE	Benzene
Molecular Weight	357.7	414.07	538	131.5	78.11
Solubility (@20- 25°C), mg/L	0.0027	3400 – 9500	519	1100	1780
Vapor Pressure (@25°C), mmHg	4.05x10 ⁻⁵	0.5-10	2.48x10 ⁻⁶	77.5	97
Henry's Constant, atm- m ³ /mol	4.6x10 ⁻³	1.01x10 ⁻⁴	3.05x10 ⁻⁹	0.01	0.0056
Log Koc	5 – 7	2.06	2.57	2.473	2.13

Perfluorinated compounds (PFCs)

- Perfluorinated Compounds (PFCs) generally are the Perfluoroalkyl acids (PFAAs)
- PFAAs include:
 - Perfluoralkyl carboxylates (PFCAs) e.g. PFOA
 - Perfluoroalkyl sulfonates (PFSAs) e.g. PFOS
 - Perfluoroalkyl phosphinic acids (PFPiS); perfluoroalkyl phosphonic acids (PFPAs)
- There are many PFAAs with differing chain lengths, PFOS and PFOA have 8 carbons (C8) octanoates

C1	Methane

C2 Ethane

C3 Propane

C4 Butane

C5 Pentane

C6 Hexane

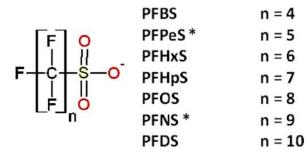
C7 Heptane

C8 Octane

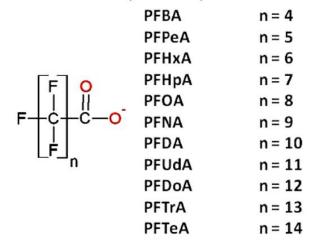
C9 Nonane

C10 Decane

C11 Unodecane


C12 Dodecane

C13 Tridecane


C14 Tetradecane

ARCADIS Design & Consultancy for natural and built assets

Perfluoroalkyl Sulfonates^L

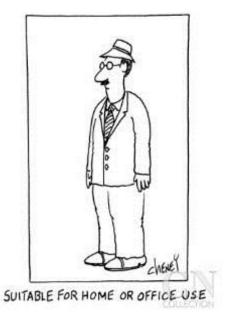
Perfluoroalkyl Carboxylates^L

Zwitterionic, Cationic, and Anionic Fluorinated Chemicals in Aqueous Film Forming Foam Formulations and Groundwater from U.S. Military Bases by Nonaqueous Large-Volume Injection HPLC-MS/MS

Will J. Backe,† Thomas C. Day,† and Jennifer A. Field**

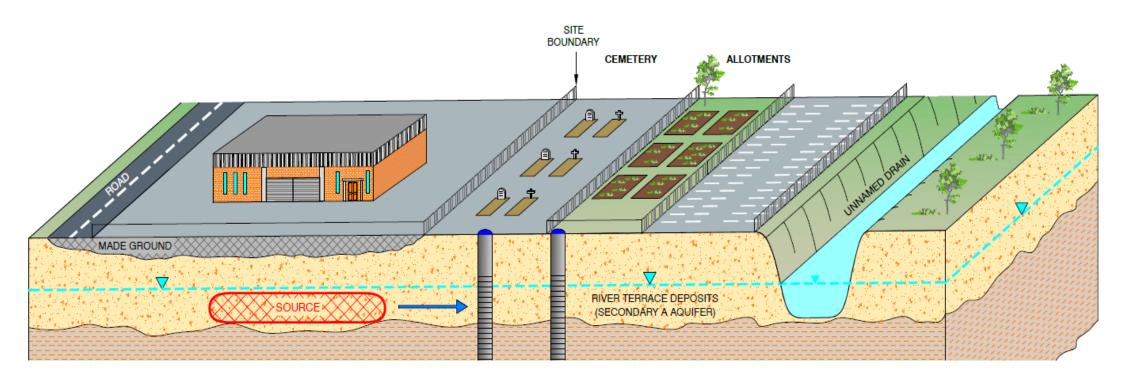
PFAAs totally resist biodegradation & biotransformation so are extremely persistent

Let's start with three key concepts


1. What is Risk?

Χ

2. Suitable for Use


3. Source-Pathway-Receptor linkages

Conceptual Site Model

UNNAMED DRAIN

Buncefield

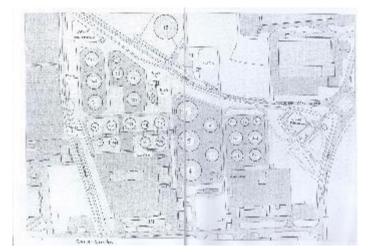
- Explosion measured at 2.4 on the richter scale
- 786,000 litres of foam concentrate used
- 53 million litres of 'clean water' applied to fire
- 15 million litres of water recycled and reapplied to fire
- 10 million litres of water moved on site to protect the environment

© Arcadis 2016 October 26, 2017

Buncefield Environmental Project

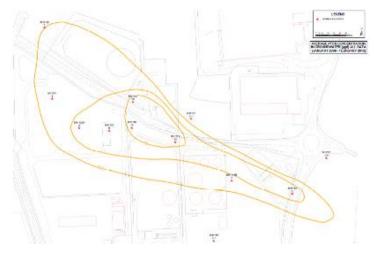
ARCADIS Design & Consultancy for natural and built assets

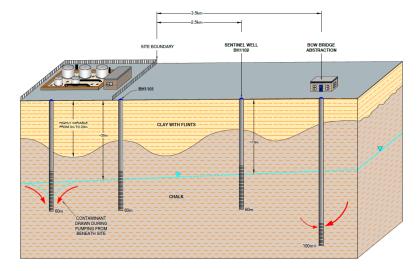
- Immediate clean-up operation to uplift 50 million litres liquid –trucked to London, stored 18 months and treated with reverse osmosis
- PFOS to be present in approximately 12,000m³ of shallow soils (<2m below ground level)
- Prevent infiltration through to the underlying Principal Aguifer
- Concentrations ranged from 0.005 to 3.5mg/kg with an average concentration of 0.82mg/kg
- Key SPR linkages identified
 - Sources
 - Fuel
 - Firewater (PFOS)


- **Pathways**
- Infiltration
 - Offsite migration

- Receptors
 - Shallow soils
 - **Chalk Aquifer**
 - Drinking Water Abstraction (3.5km east)







Buncefield CSM

- Majority of Fire water recovered
- Soak away for adjacent road excavated through overlying clay layer which protects the underlying chalk aquifer
- Protecting clay layer punctured
- Soak away dimensions small so limited volume of firewater entered aquifer
- Site Specific Acceptance Criteria (SSAC) were developed for PFOS based on the Environment Agency compliance criteria of 0.3ug/l and 1ug/l at receptor to yield SSACs

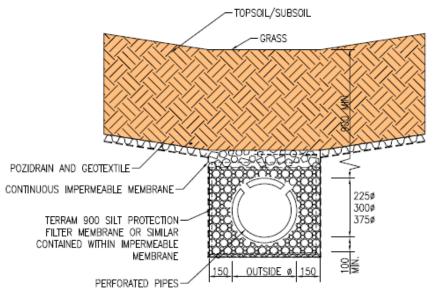
Agreed Risk Management Strategies

Shallow Soil

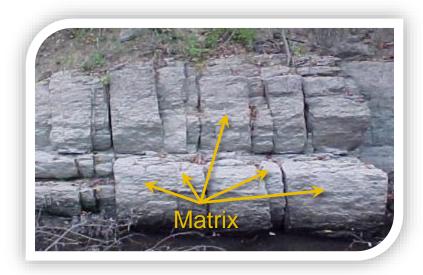
- Removal of LNAPL/heavily impacted soils
- Cut infiltration pathway to the underlying aquifer
 - capping project
 - terminal rebuild project

Chalk Aquifer

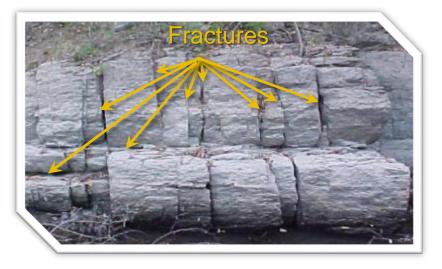
- Recovery of LNAPL from groundwater
- Removal of contaminant mass from centre of Site via groundwater pumping
- Monitored Natural Attenuation



© Arcadis 2016



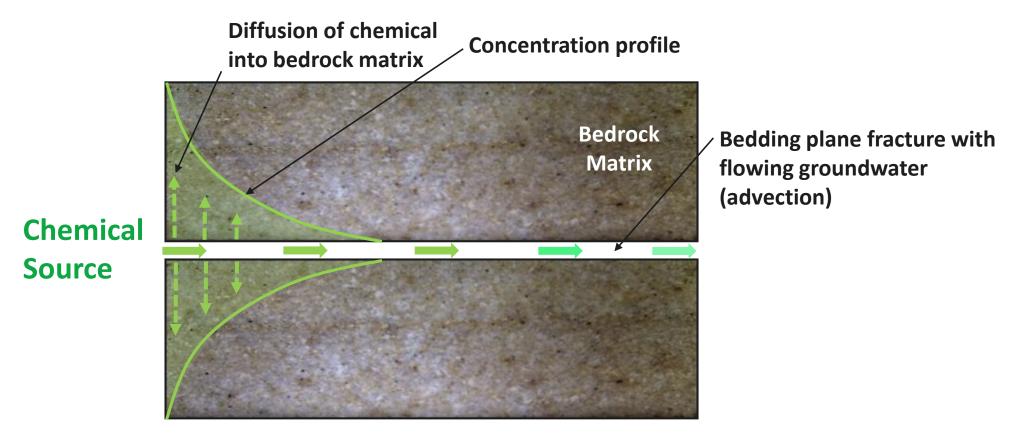
Dual-Porosity Conceptual Model


Primary Porosity

- Also known as immobile porosity
- Porosity within the bedrock matrix

Secondary Porosity

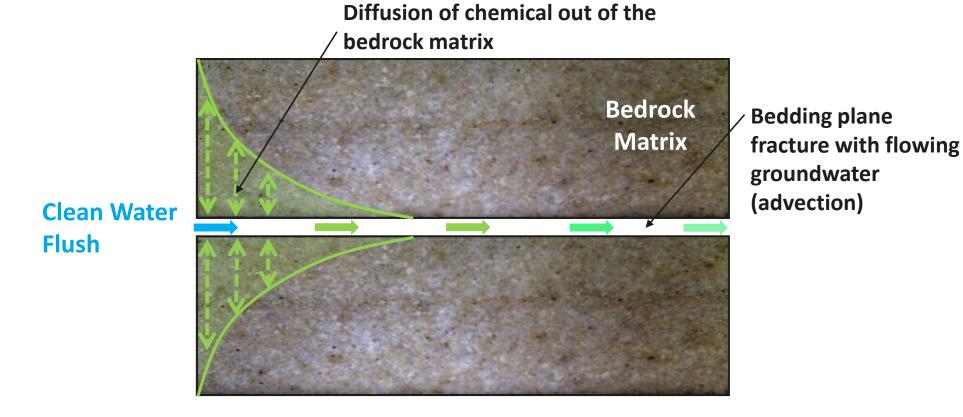
- Also known as mobile porosity
- Porosity within bedrock fractures



Site Information

- Immobile porosity: 35%
- Mobile porosity: 0.1%
- Implication: the bedrock matrix can store about 350 times more groundwater and chemicals than the bedrock fractures.

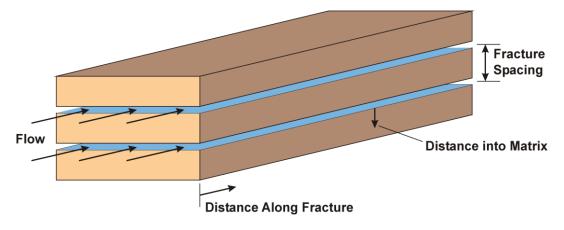
Dual-Porosity Conceptual Model

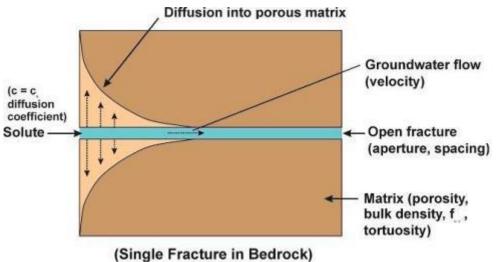


When a chemical source is introduced at an open, flowing bedrock fracture:

- Chemical is transported along the fracture via advection and dispersion
- A concentration gradient is created between the fracture and the bedrock matrix
- Chemical is transported into the bedrock matrix via diffusion
- The matrix diffusion process results in slower plume velocity (i.e. retardation)

Dual-Porosity Conceptual Model


When a clean water flush (i.e. remediation) is attempted in a bedrock fracture:


- Clean water is transported along the fracture via advection
- A chemical concentration gradient develops from the bedrock matrix to the fracture
- Chemical is transported via diffusion from the bedrock matrix into the fracture (i.e., "reverse diffusion")
- The reverse diffusion process can cause rebound during remediation efforts

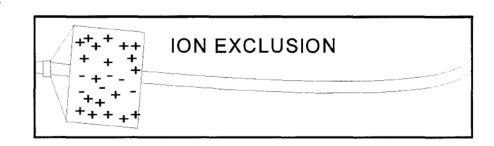
Modeling Approach Dual-Porosity Conceptual

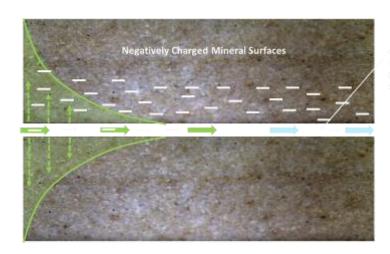
ARCADIS Design & Consultancy for natural and built assets

- Parallel plate model simulates groundwater flow in a series of open, flowing fractures
- Solutes are transported in fractures via advection and dispersion
- Solutes are transported to and from the bedrock matrix via diffusion

Anion Exclusion Hypothesis

- Comparing transport of PFOS and MTBE allowed us to gain insight into factors controlling PFOS transport
- PFOS Diffusion Coefficient Estimates


Standard estimation value:


Measured value:

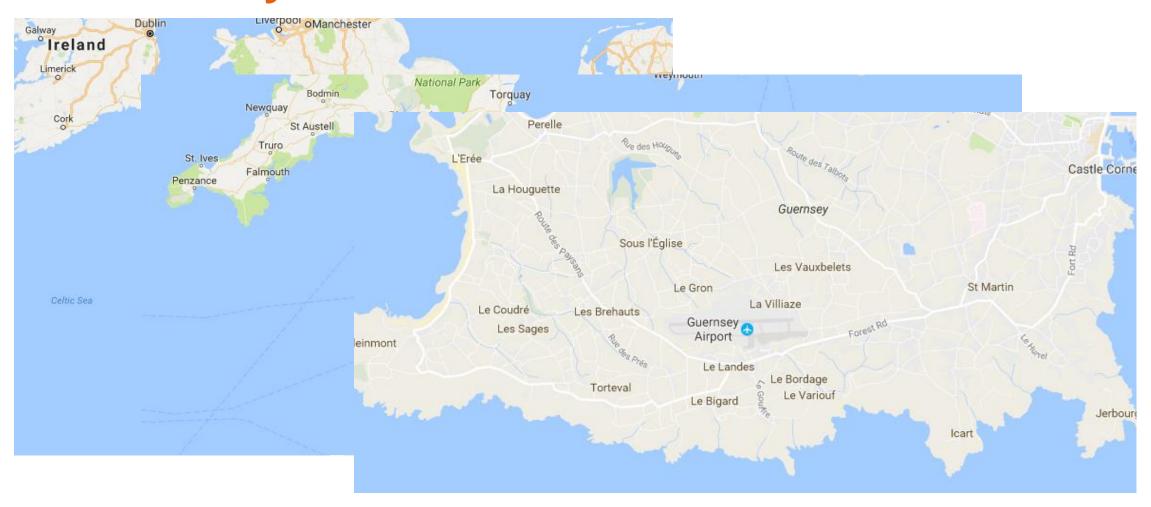
 $3.3 \times 10^{-6} \text{ cm} 2/\text{sec}$

4.1 x 10⁻⁷ cm2/sec

- Dual-Porosity-Derived Retardation Factor
 - PFOS: 221 -equates to plume progressing 29 m/y
 - MTBE: 378 -equates to plume progressing 17 m/y
- PFOS transport velocity was significantly lower than the average linear groundwater velocity (6,497 m/y)
- The dual-porosity retardation factor for PFOS was lower than MTBE, indicating PFOS is more mobile than MTBE in this setting
- Additional mechanisms impeding PFOS diffusion into the Chalk suggested

Investigation, Risk Assessment and Remediation of Multiple PFAS Source Zones at an Airport to Safeguard an at Risk Water Supply

Contents



- Conceptual site models
- Risk based and sustainable contaminated land management
- PFOS Distribution
- Regulations
- Guernsey Case study
 - Scope
 - Approach
 - Risk Assessment
 - CALM Modelling
 - Remediation
 - Outcome

Guernsey

Drinking water derived principally from surface water

UK Drinking Water Inspectorate

Item	Regulatory requirement	Guidance value (concentration)	Minimum action to be taken
Perfluoroo	octane sulphonate (PFOS)		
Tier 1	Regulation 27 (Risk assessment)	potential hazard	ensure considered as part of statutory risk assessment
Tier 2	Regulation 10 (Sampling: further provisions)	> 0.3µg/l	consult with local health professionals; monitor levels in drinking water.
Tier 3	Regulation 4(2) (Wholesomeness)	> 1.0µg/l	As tier 2 plus: • put in place measures to reduce concentrations to below 1.0µg/l as soon as is practicable.
Tier 4*	Water Industry (Suppliers' Information Direction) 2009 (Notification of events)	> 9.0ug/l	As tier 3 plus: • ensure consultation with local health professionals takes place as soon as possible; • take action to reduce exposure from drinking water within 7 days.

*Note - notification to the Inspectorate under the Information Direction may also be triggered at lower level due to Tier 1, 2 or 3 activities

Perfluorooctanoic acid (PFOA)

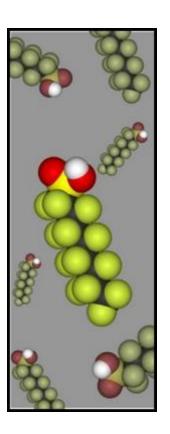
Tier 1	Regulation 27 (Risk assessment)	potential hazard	ensure considered as part of statutory risk assessment	
Tier 2	Regulation 10 (Sampling: further provisions)	> 0.3µg/l	consult with local health professionals; monitor levels in drinking water.	
Tier 3	Regulation 4(2) (Wholesomeness)	> 5.0µg/l	As tier 2 plus: • put in place measures to reduce concentrations to below 5.0µg/l as soon as is practicable.	
Tier 4*	Water Industry (Suppliers' Information Direction) 2009 (Notification of events)	> 45.0µg/l	As tier 3 plus: • ensure consultation with local health professionals takes place as soon as possible; • take action to reduce exposure from drinking water within 7 days.	
*Note: notification to the Increatorate under the Information Direction may also be triggered at lower levels				

"Note - notification to the Inspectorate under the Information Direction may also be triggered at lower levels due to Tier 1.2 or 3 activities

(October 2009)

Guidance on the Water Supply (Water Quality) Regulations 2000¹ specific to PFOS (perfluorooctane sulphonate) and PFOA (perfluorooctanoic acid) concentrations in drinking water

Water supply companies must risk assess potential sources of PFOA/PFOA which might affect their supply system and undertake monitoring.


While 0.3ug/L are the trigger, target guidance levels are 1.0ug/L PFOS & 5.0ug/L PFOA.

Strategy for Managing PFOS in Guernsey

Arcadis have been working with Guernsey since 2008. The work included the following:

- Desk Based Review & Preliminary Risk Assessment
- Intrusive Assessments and Monitoring
- Fate & Transport Modelling (Quantitative Risk Assessment)
- Management/Remediation Strategy
- Interim Emergency Response Measures
- Implementation of Remedial Management Strategies

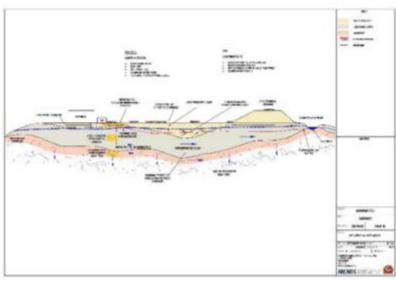
Guernsey Site Setting

Initial Objectives

- Quantify the extent of PFOS impacts in soil and water within the airport boundaries;
- Determine whether the identified PFOS impacts represent a significant risk to the potable water supply;
- Identify the most cost effective and pragmatic method of managing any on-going PFAS impacts within the reservoirs and water catchment areas

Channel Island Airport Site Setting and Drivers

Setting


- Densely populated island communities
- Surface water dominated drinking water supply
- Airport topographical high point within water supply catchments
- Shallow water table (<0.5m bgl)

Source

Fire fighting foam usage

Drivers

 To provide a sustainable solution which would protect drinking water sources and the wider environment in the short, medium and longer terms

31

Guernsey Incidents & Foam Usage

Eleven locations were identified where AFFF has been used. Following investigations by Arcadis, 7 main areas were found to be impacted with PFOS:

- Fire Training Area (GAFT)
- G-BNCY crash site 1997 (GAFC)
- Fire Tender Incident 2002 (GAFE)
- Fire Station Area and Old Fire Training Area (GAFS)
- Central Area Site (Herald Crash 1984) (GAHD)
- Runway End (GARE)
- Forest Road Crash Site 1999 (GAPP)

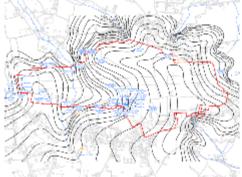
Four of the above locations were considered priority and were subject to remediation.

Incidents & Foam Usage

- 11 locations were identified where airport firefighting foam containing PFAS had been used
- 7 of these areas were found to be impacted with PFAS.
- 4 locations were then prioritised and were subject to further investigations and remediation, including:
 - Fire Training Area
 - Fire Tender Incident
 - Fire Station Area
 - 1999 Crash Site
- Interim Emergency Response Measures
 - Sampling adjacent to fire station revealed elevated PFOS concentrations entering drainage
 - Localised dewatering quickly established to prevent ongoing migration of PFOS

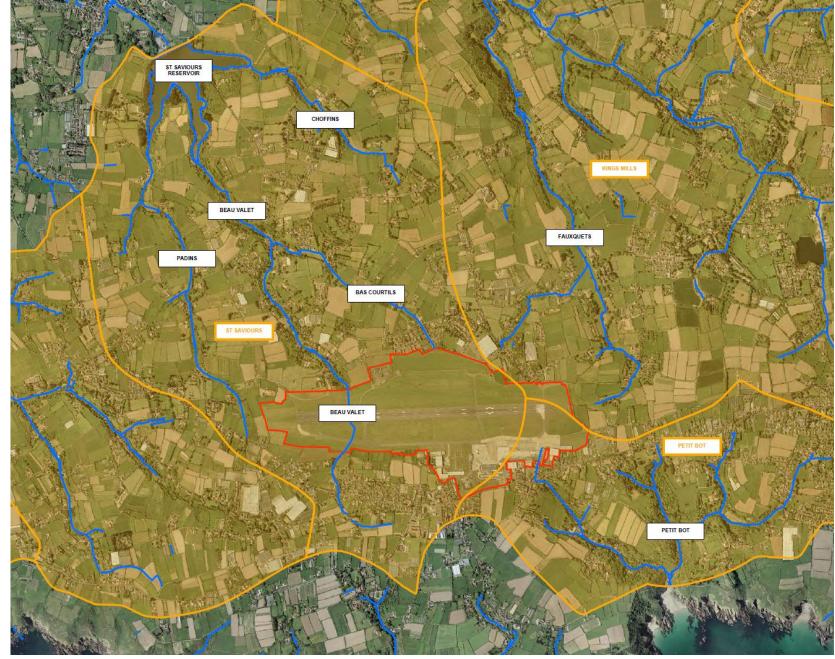
Fate & Transport Modelling – Site Specific Detailed Quantitative Risk Assessment

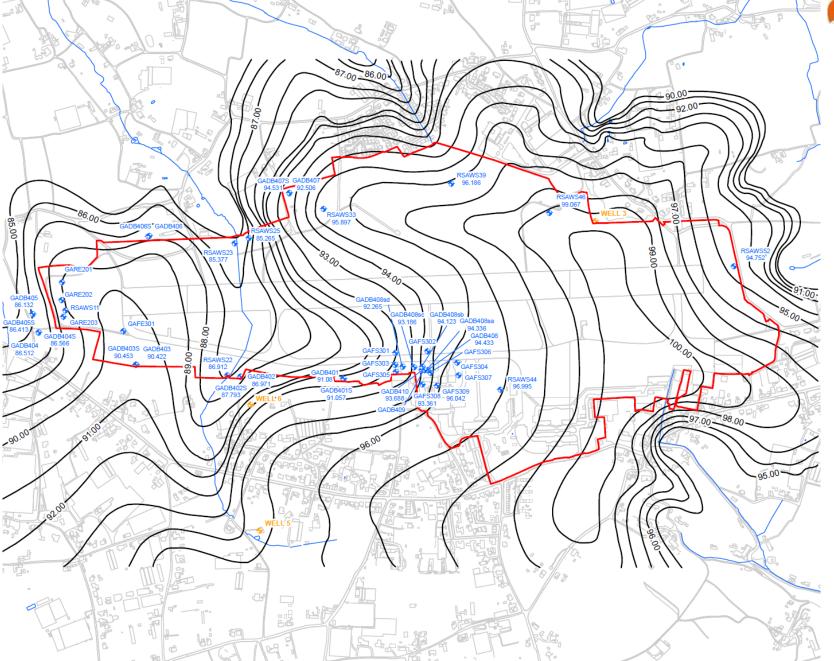
- Site Detailed quantitative risk assessment (DQRA) of the delineated PFOS soil and water impacts
- Modelling for alternative locations and likely volumes of PFOS impacted material that would be moved during any airport redevelopment works.
- Site specific model in order to model accurately the anticipated migration of the PFOS

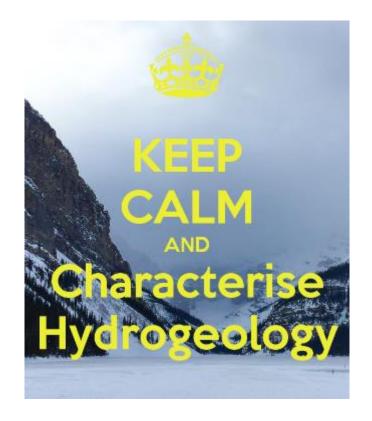


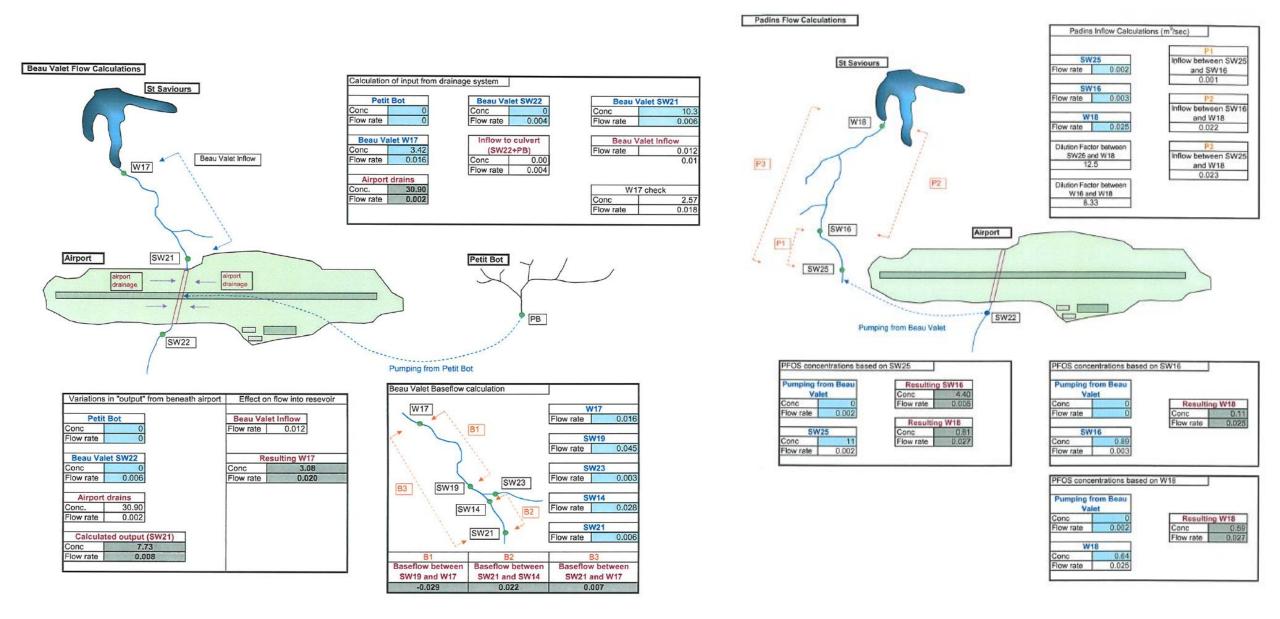
Calculating Attenuation Linkage Model (CALM)

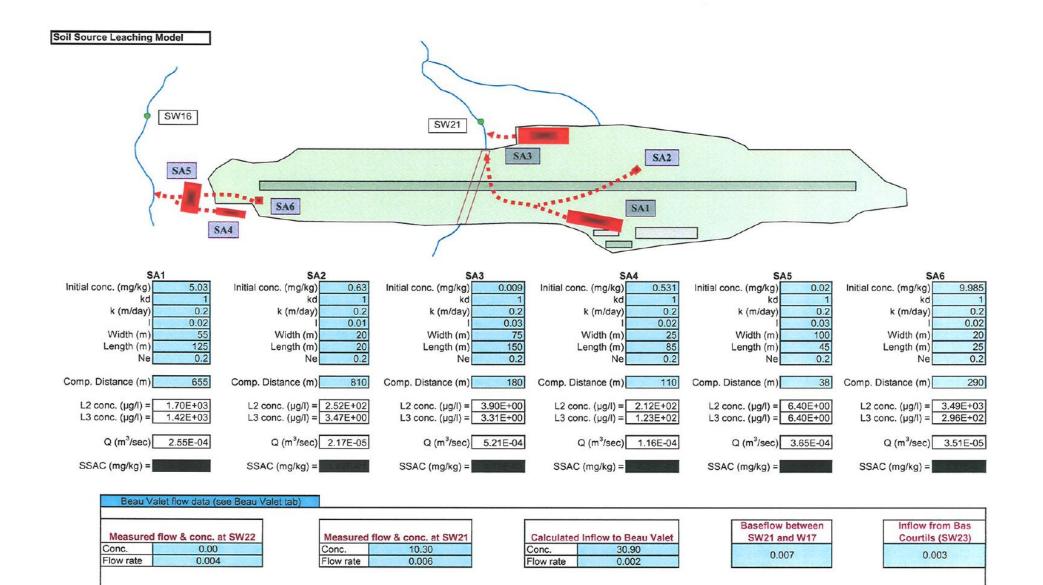
To assess fate and transport processes of identified PFOS concentrations a numerical was compiled with the primary interlinking elements:


- PFOS within soils beneath the airport, leaching into groundwater and migrating into surface water
- PFOS within the surface water system, mixing and diluting as it flows to the reservoir
- PFOS within the reservoir, entering, mixing and diluting via the streams and being abstracted

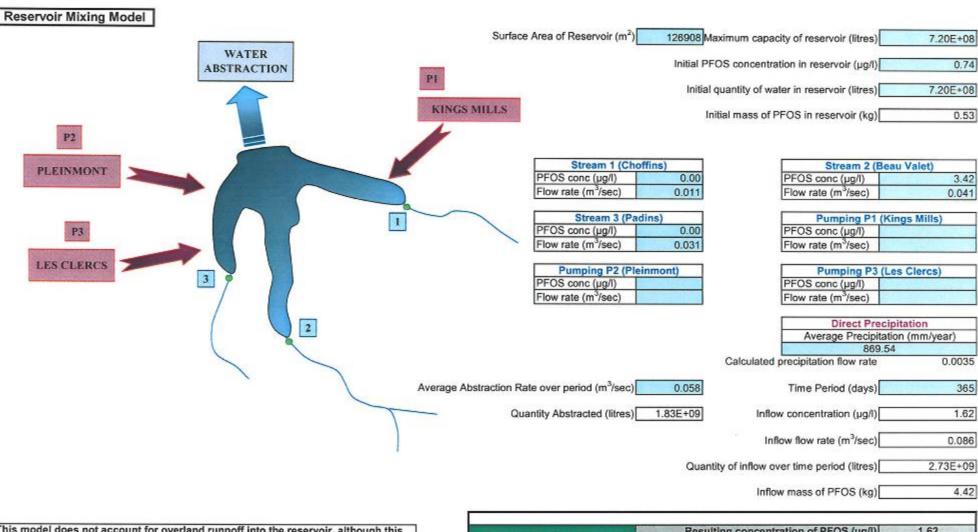






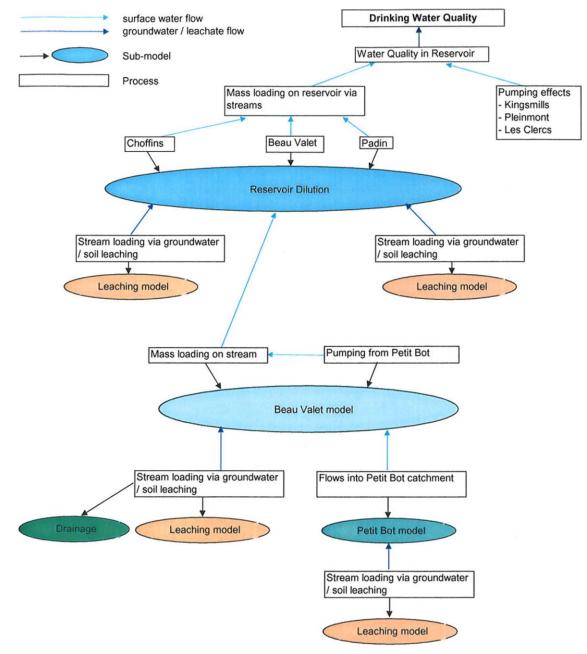


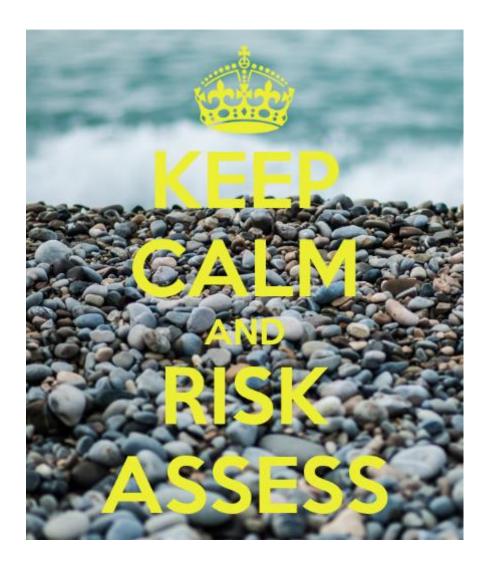
Calculating Attenuation Linkage Model (CALM) ARCADIS Design & Consultancy for natural and built assets Reservoir Inlet Flow Model



Calculating Attenuation Linkage Model (CALMP ARCADIS | Design & Consultancy for nutural and built assets **Soil Source Leaching Model**

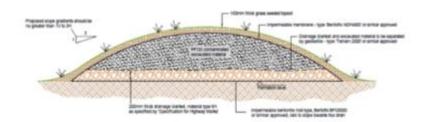
38


Calculating Attenuation Linkage Model (CALM) ARCADIS Design & Consultancy for natural and built assets Reservoir Mixing Model


RESERVOIR OVERTOPPING	Resulting concentration of PFOS (µg/l)	1.62		
RESERVOIR OVERTOPPING	Reduction in reservoir water quality			
	Resulting mass of PFOS in reservoir (kg)	1.16		

Calculating Attenuation Linkage Model (CALM)

Sub-model process diagram



PFOS Mass Removal & Containment

- Removal of the PFOS impacted soil that was considered to act as a PFOS source into the groundwater
- Excavations of impacted soils carried out at 4 locations
- All excavated material was then isolated in a specifically designed bund to the front of the airport terminal building
- 15,000 tons of PFOS contaminated soils within a dedicated waste management cell, which also acted as a sound barrier.

Typical Indicative Section Through PFOS Contaminated Material Containment Bund

© Arcadis 2015 October 26, 2017 **41**

Groundwater Treatment

- Designed in 2009 by Arcadis
- Capacity 20L/s
- Capture of water leaving airport towards reservoir, treatment and discharge away from reservoir
- Treatment of 200 million m³ of water containing up to 300 μg/L (ppb) PFOS
- Consistent treatment performance using granulated activated carbon to less than UK regulatory standards

Results

- Systematic and robust approach with the aim of efficiently and cost effectively assessing the risks
- Development of short, medium and long term solutions to protect the population's drinking water supply
- Within 9 months of assessment a solution was developed and implemented which reduced PFOS concentrations in the drinking water supply by 75%
- Further reductions in PFOS concentrations were ensured in the medium and longer term

© Arcadis 2015 October 26, 2017 **43**

PFOS levels in Guernsey drinking water safe, finds report

Soil contaminated by an overturned fire truck was removed in March 2012

Guernsey and Alderney tap water is safe to drink despite containing traces of a firefighting chemical, says a report.

October 26, 20

Guernsey Water works to cut levels of Pfos in raw water

Improved monitoring shows levels are well within UK guidance

by Paul Ainsworth

painsworth@guernseypress.com

ACTION is being taken to reduce Pfos levels within raw water, Guernsey Water's annual water quality report has said.

The utility said it had been working with the Director of Environmental Health and Pollution Regulation and other States departments to jeduce levels of the firefighing foan chemical Pfos, through the treatment of stream water from affected catchments and the removal and containment of contaminated soil.

The utility's water quality risk manager, Margaret McGuinness, said affected catchments had also been closely monitored and measures put in place, such as stream diverts, to minimise levels in raw

'This has been successful and we have seen a drop in the maximum detected Pfos concentration recorded,' she said.

Over the year Pfos has been monitored on a fortnightly basis both in the raw water in St Saviour's and treated water leaving the parish's water treatment

ed in the treated drinking water on Pfos. analysis was 0.049µg/l (parts per billion) which is well within tier 1 of the guidance issued by the

Director of water services at Guernsey Water Stephen Langlois has said the utility continued to provide water that is safe and good to drink. (Picture by Tom Tardif, 15570564)

The maximum result detect- UK Drinking Water Inspectorate Reservoir, falling from 0.19µg/l in from 20µg/l to 14µg/l a year later

There has also been a drop in the

2014 to 0.077ug/l recorded in 2015.

There was a further decrease in maximum detected Pfos concen- the maximum Pfos concentration of factors including the removal tration recorded at St Saviour's detected in samples from streams, of contaminated soil from the

in 2015.

'This was due to a combination

catchment and natural variation in rainfall amounts.'

Water quality customer enquiries rose by 110 to 226 in 2015, with 78 of these related to the taste and odour of drinking water, which was a direct consequence of algal 'die off' in the St Saviour's and Longue Hougue reservoirs.

Guernsey Water said this was being dealt with through improved water quality monitoring and proactive selection of raw water sources which helps dilute or avoid supplying taste-affected

Overall, the utility said, its annual water quality report showed it had achieved all its 2015 water quality targets with 100% compliance recorded at the service reservoirs and water treatment works for the second year running.

The utility provided 4,527 megalitres of safe and high-quality water to its customers and, when analysed, 99.84% of the water met all national and European Union Standards.

Director of water services Stephen Langlois said it continued to provide water that was safe and good to drink.

'These excellent figures are due to the diligence and technical expertise of our staff who are constantly striving to improve what we do and ensure our customers always value the quality of the drinking water we supply."

PFC's to PFASs / REGULATORY CLIMATE / PFAS DISTRIBUTION

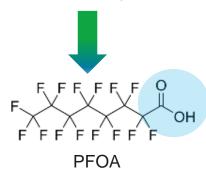
Evolution of regulatory understanding globally and global distribution

Polyfluorinated Compounds - Precursors

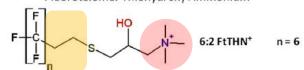
Thousands of polyfluorinated precursors to PFAAs have been commercially synthesized for bulk products

The common feature of the precursors is that they will **biotransform** to make PFAA's as persistent "dead end" daughter products

PFAS do not biodegrade i.e. mineralise

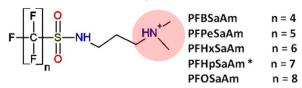

Some precursors are fluorotelomers

Some are cationic (positively charged) or zwitterionic (mixed charges) —this influences their fate and transporting the environment


Cationic / zwitterionic PFAS tend to be less mobile than anionic PFAAs and so can potentially be retained longer in "source zones"

Environmental fate and transport will be complex as PFAS comprise multiple chain lengths and charges

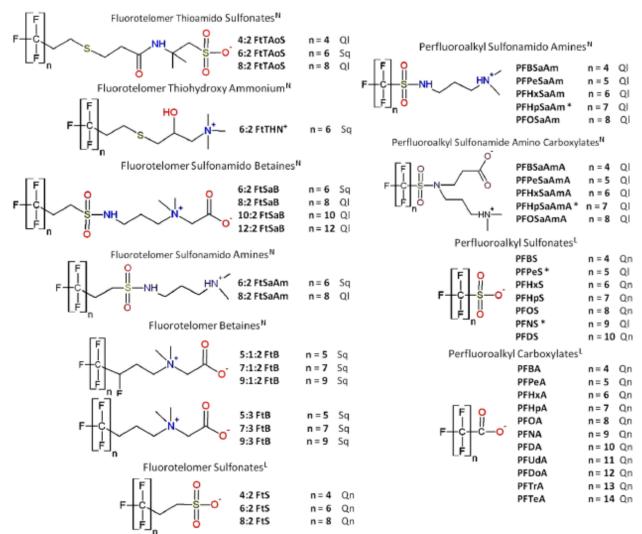
Fluorotelomer alcohol, 8:2 FTOH



Fluorotelomer Thiohydroxy Ammonium^N

Fluorotelomer Sulfonamido Betaines^N

Perfluoroalkyl Sulfonamido Amines^N



Perfluoroalkyl Sulfonamide Amino Carboxylates^N

Diversity of PFAS Characterised in AFFF

Zwitterionic, Cationic, and Anionic Fluorinated Chemicals in Aqueous Film Forming Foam Formulations and Groundwater from U.S. Military Bases by Nonaqueous Large-Volume Injection HPLC-MS/MS

pubs.acs.org/est

Discovery of 40 Classes of Per- and Polyfluoroalkyl Substances in Historical Aqueous Film-Forming Foams (AFFFs) and AFFF-Impacted Groundwater

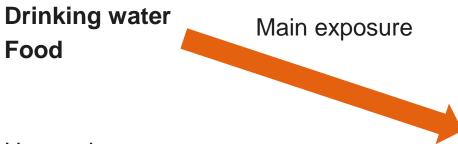
Krista A. Barzen-Hanson,[†] Simon C. Roberts,^{∇,‡} Sarah Choyke,[§] Karl Oetjen,[‡] Alan McAlees,[∥] Nicole Riddell,[∥] Robert McCrindle,[⊥] P. Lee Ferguson,[§] Christopher P. Higgins,^{*,‡} and Jennifer A. Field*,[#]

Class Number	Structure	Majo.	Aeronym	Confidence Level ^{d,i}	AFFF/CP Found In
21	г Г Г Г Г Г Г П П Он	3-9	n-F5S- PFAS	2ь	A, B, C, D, E, G, M, N
22	Б. Т. П. ОН	6-8	n+/-F\$S- PFAA ^r	3	M, N
23	Multiple isomers possible	1-10	UPFAS ^{ch}	3	A, B, C, D, E, M, N, P
24	Multiple isomers possible	1-6	H- UPFAS ^{g,h}	3	A, B, C, D, E, F, G, M
25	Multiple isomers possible	0'-8	H-PFAS ^{2,h}	33	A, B, C, D, E, F, G, M, N, P
26	PHOON ON Multiple isomers possible	5, 7	≈1 PFAS [©]	3	A, B, C, D, E, F, G, M, N, P

13	r	3-8	N-TAMP- FASA	3	A, B, C, D, E, F, G
14	-#1k	3-6	N-TAMP- FASAP	3	D.E.E.
1.5		4-6	N-CMAmP- FASAP	26	D, E, F, G
16	F	3-6	N-CMAnP- FASA	26	D, E, F, G
17		6, 8, 10	CMAnii-FA	25	L.
18	r∰____on	4, 6, E	CMAmB-FA	3	L.
19	C _{ert} H _M O ₂ SN ₂ F _{2e+1}	6, 8, 10	Net applicable	4	I, J
20	$C_{n+1}H_{20}O_{1}SN_{2}F_{2n+1}ox\ C_{n+20}H_{20}O_{1}SN_{2}F_{2n+1}$	Un- known	Not applicable	5	1, 3

Class Number	Structure	$N^{(1)}$	Acronym ¹	Confidence Level ^{fo}	AFFF/CP Found In
1		3-6	N-SP-FASA	26	В, С
2		3-8	N-SPAmP- FASA	26	A, B, C,
3		3-9	N-SHOPARP- FASA	3 ^f	C, D, E, F, G
4		4-5	N- SPHOEAmP- FASA	3	В, С
5	#	3-4	N-SPAmP- FASAPS	20	A, B, C
6	FH COH	3-6	N- dihopardion -FASA	3	B, C, O
7		2-6	N- EHOPAMHOB FASAPS	3	A, B, C
8		2-8	N-HOEAmP- FASAPS	26	A, B, C
9	r H l n on	2-8	N-HOEAMP- FASE	26	A, B, C, D, E
10	r	4-5	N- HOEAmHOP- FASA	3	B, C
11	r	2-8	N-HOEAmP- FASA	26	A, B, C, D, E
12	·#;	4-8	N-TAmP-N- McFASA	3	В

Aerobic Biotransformation Funnel –Precursors converted to PFAAs

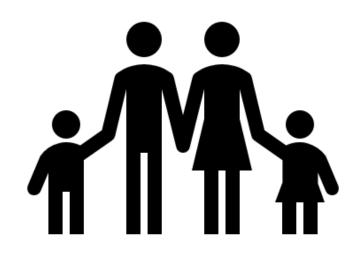


All Polyfluorinated/ PFAA Precursor Compounds in Commerce

Hundreds of Common Intermediate Transformation Products

Approximately 25 PFSAs, PFCAs, PFPAs -collectively termed PFAAs

Human Exposure to PFAS ARCADIS Design & Consultancy for natural and built assets


House dust

Indoor air

Outdoor air

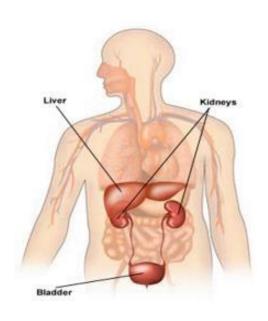
Consumer products

- Fluoropolymers inc. side chain polymers
- Fluorosurfactants
- Performance chemicals
- Product residuals

PFAS Exposure, Distribution, and Elimination in Humans

EXPOSURE

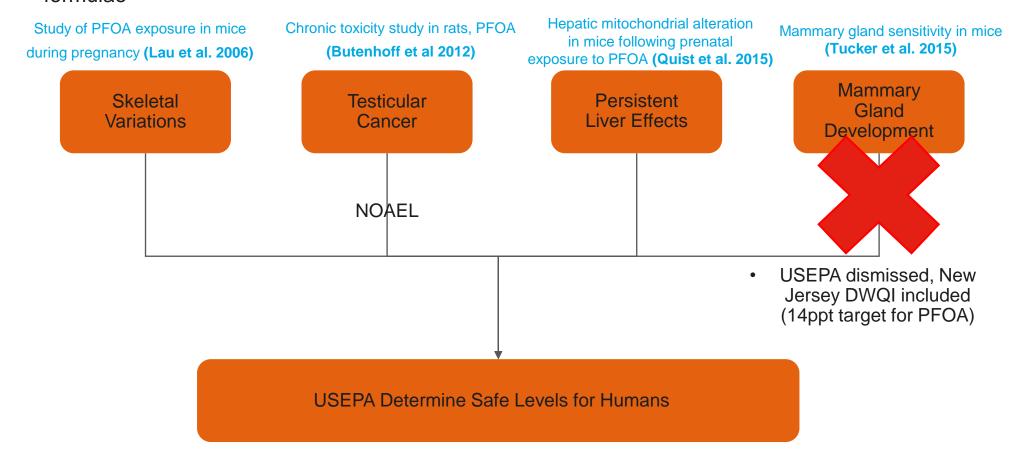
DISTRIBUTION


ELIMINATION

- Most exposure is likely from ingestion of contaminated food or water
- Exposure can also comes from:
 - Breast milk
 - Air
 - Dust (especially for children)
 - Skin contact with various consumer products

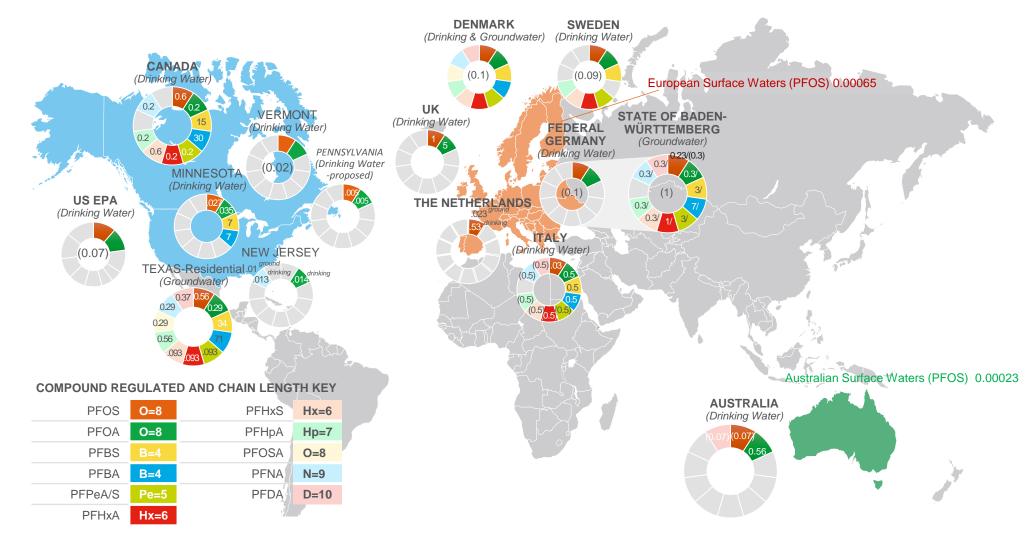
- PFAS bind to proteins, not to fats.
- Highest concentrations are found in blood, liver, kidneys, lung, spleen and bone marrow.
- Long chain PFAS such as PFOS, PFHxS and PFOA have bioaccumulative properties.
- Shorter chain PFAS generally have a lower bioaccumulation potential, although there may be some exceptions.

- Elimination of PFOS, PFHxS and PFOA from the human body takes some years, whereas elimination of shorter chain PFAS are in the range of days
- Apart from chain length, blood halflives of PFAS are also dependent on gender, PFAS-structure (branched vs. straight isomers), PFAS-type (sulfonates vs. carboxylates) and species.
- Elimination mainly by urine.


Toxicity for Humans

- Exposure mainly by ingestion
- PFAS bind to proteins (not to lipids / fats) and are mainly detected in blood, liver and kidneys
- PFOS: carcinogenity "suggestive" (US EPA, 2014). PFOA: "possibly carcinogenic" (International Agency for Research on Cancer, IARC, 2014)
- Study with 656 children demonstrated elevated exposure to PFOS & PFOA are associated with reduced humoral immune response [1]
- Large epidemiological study of 69,000 persons found probable link between elevated PFOA blood levels and the following diseases: high cholesterol, ulcerative colitis, thyroid disease, testicular cancer, kidney cancer and preeclampsia – C8 science panel [2]
- European Food Safety Authority (2008) established a TDI for PFOS and PFOA of 150 ng/kg bw/day and 1.500 ng/kg bw/day
- USEPA has selected a Reference Dose for PFOS and PFOA of 20 ng/kg bw/day (May 2016)
- [1] Grandjean, P.; Andersen, E. W.; Budtz-Jørgensen, E.; Nielsen, F.; Mølbak, K.; Weihe, P.; Heilmann, C. Serum vaccine antibody concentrations in children exposed to perfluorinated compounds. *JAMA* 2012, 307, 391–397.

Perfluorinated Compounds: Reproductive Toxicity


- Pregnant/breastfeeding mothers are the primary sensitive populations.
 - Detected in breastmilk, umbilical cord blood, and amniotic fluid
- At birth infants have roughly equivalent serum levels as mothers.
 - Levels in infants increases further after birth from breast milk or from water in formulae

Evolving Regulatory PFAS Values – Overview

Drinking, Surface and Ground Water (µg/l)

PFAS in European Surface Waters

River	PFOS (ng/l)	Flow(m³/s)
Scheldt (Be, NL)	154	-
Seine (Fr)	97	80
Severn (UK)	238	33
Rhine (Ge)	32	1,170
Krka (SI)	1,371	50

Environmental Pollution 157 (2009) 561-568

Contents lists available at ScienceDirect

Environmental Pollution

journal homepage: www.elsevier.com/locate/envpol

EU-wide survey of polar organic persistent pollutants in European river waters

Robert Loos*, Bernd Manfred Gawlik, Giovanni Locoro, Erika Rimaviciute, Serafino Contini, Giovanni Bidoglio

European Commission, Jaint Research Centre, Institute for Environment and Sustainability, Via Enrico Fermi, 21020 hyra, Italy

More than 100 river water samples from 27 European Countries were analysed for 35 selected polar organic contaminants.

Property of Arcadis, all rights reserved

European Surface Water Distribution

Contents lists available at ScienceDirect

Environmental Pollution

journal homepage: www.elsevier.com/locate/envpol

EU-wide survey of polar organic persistent pollutants in European river waters

Robert Loos*, Bernd Manfred Gawlik, Giovanni Locoro, Erika Rimaviciute, Serafino Contini, Giovanni Bidoglio

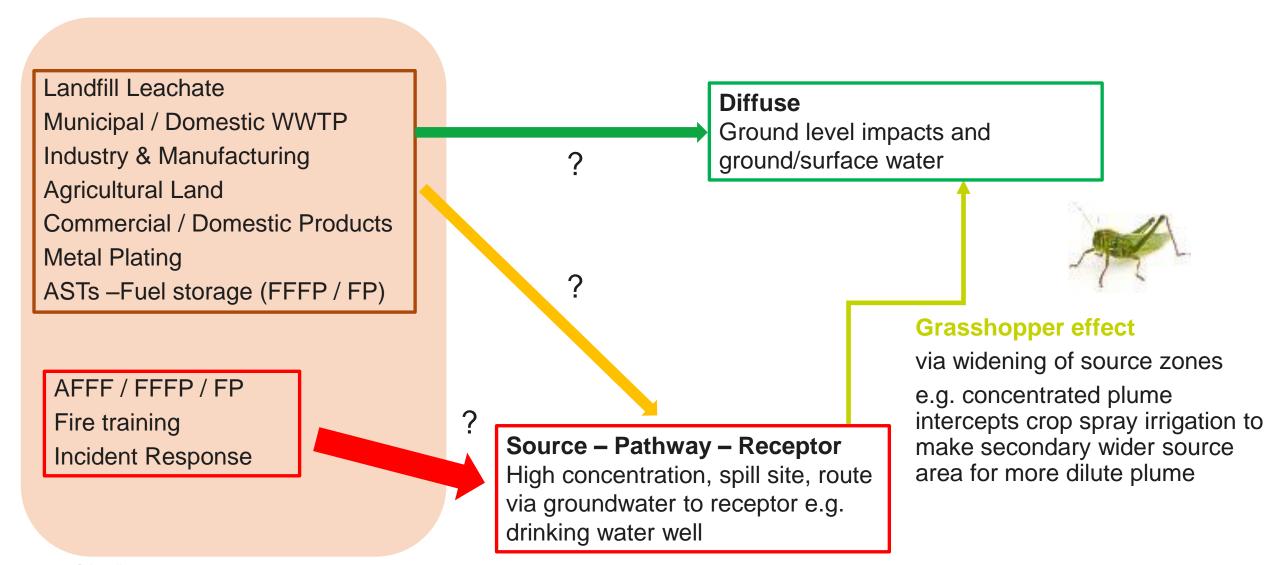
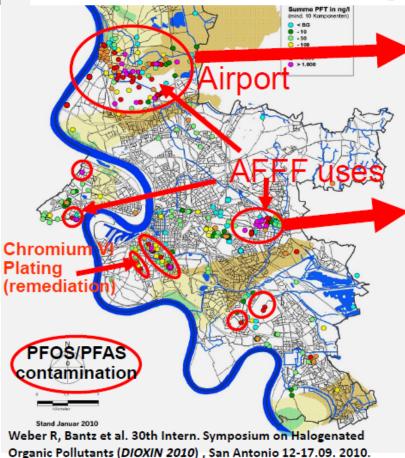

European Commission, Joint Research Centre, Institute for Environment and Sustainability, Via Enrico Fermi, 21020 Ispra, Italy

Table 1 Summary of analytical results of polar pollutants in EU Rivers

Chemical	CAS No.	RL [ng/L]	Freq [%]	Max [ng/L]	Average [ng/L]	Med [ng/L]	Per90 [ng/L]	Limit [ng/L]
Perfluorinated acids	200.2 00 0	•		2.0		Ŭ		
PFHxA; perfluorohexanoate	68259-11-0	1	39	109	4	0	12	30
PFHpA; perfluoroheptanoate	375-85-9	1	64	27	1	1	3	30
PFOA; perfluorooctanoate	335-67-1	1	97	174	12	3	26	30
PFNA; perfluorononanoate	375-95-1	1	70	57	2	1	3	30
PFOS; perfluorooctansulfonate	EDF-508	1	94	1371	39	6	73	30
PFDA; perfluorodecanoate	335-76-2	1	40	7	1	0	1	30
PFUnA; perfluoroundecanoate	2058-94-8	1	26	3	0	0	1	30
4-Nitrophenol	100-02-7	1	97	3471	99	16	95	100
2,4-Dinitrophenol	51-28-5	1	86	174	18	10	40	100
Bentazone	25057-89-0	1	69	250	14	4	31	100
2,4-D (Dichlorophenoxyacetic acid)	94-75-7	1	52	1221	22	3	35	100
Ketoprofen	22071-15-4	3	14	239	10	0	17	100
Naproxen	22204-53-1	1	69	2027	38	4	47	100
Bezafibrate	41859-67-0	1	55	1235	32	4	56	100
Mecoprop	7085-19-0	1	43	194	15	0	54	100
Ibuprofen	15687-27-1	1	62	31,323	395	6	220	200
Diclofenac	15307-86-5	1	83	247	17	5	43	100
Gemfibrozil	25812-30-0	1	35	970	29	0	17	100


Groundwater Risks to Receptors

Excessive Costs

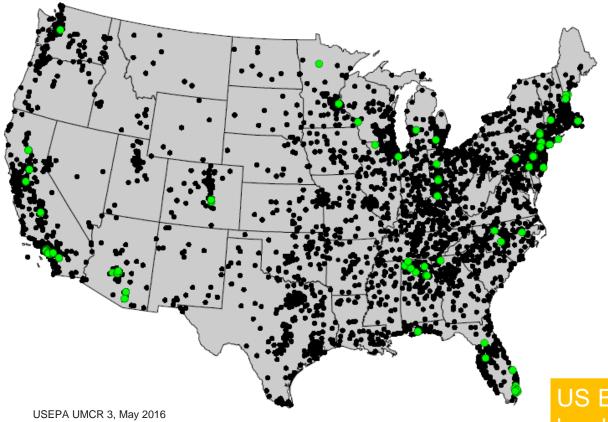
PFOS/PFAS contaminated sites? Groundwater screening in Düsseldorf city

Octob

 Cost of three wells controlling the point sources were 2 million €.

- Total remediation estimate for the airport: might reach 100 million €. http://www.derwestenrecherche.org/2013/10/pft-alarm-am-flughafendusseldorf-verseuchung-noch-extremersanierung-konnte-100-millionen-kosten/
- Remediation cost of a fire were 42 m3 AFFF were used:
- 1 million Euro assessment.
- >10 million Euro remediation.
- Ongoing case Baden-Württ. Soil exchange estimate 1-3 billion €. http://www.faz.net/aktuell/wissen/badenwuerttemberg-chemische-abfaelle-aufdem-acker-14419295.html

Lesson learned 6: Remediation of PFAS from groundwater/soil is challenging and expensive. No natural degradation!


Roland Weber

POPs Environmental Consulting, Schwäbisch Gmünd, Germany roland.weber10@web.de

http://greensciencepolicy.org/wp-content/uploads/2016/09/Rolland-Weber-PFOS-PFAS-German-activities-Final.pdf

59

PFAS in US Public Water Supplies

Six million Americans drinking water containing unsafe levels of unregulated chemicals, study finds

In one Delaware town, the levels of one such chemical in the water supply were 25 times higher than the EPA deems safe

Fim Walker US Correspondent | @timwalker | Tuesday 9 August 2016 22:57 BST |

US EPA has established the drinking water health advisory levels at 70 ng/L for PFOA/PFOS 19th May 2016

https://www.epa.gov/ground-water-and-drinking-water/drinking-water-health-advisories-pfoa-and-pfos

Detected in ~ 2% of large public water supplies

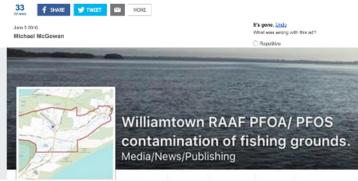
PFAS News 2016

Erin Brockovich: It's Not Just Flint-America

Erin Brockovich is a consumer advocate, and Ken Cook is president of the Environmental Working Group. We must reform our broken

chemical laws to prevent more tragedies

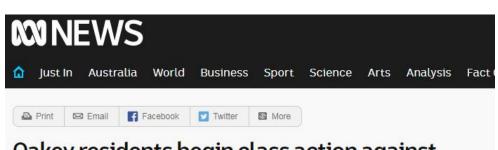
Most Americans take our drinking water for granted: turn the tap, fill a glass and drink. Only when a community's health and safety are imperiled do we pay heed to the threat of industrial chemicals in


The Intercept_

LIFESTYLES EXPLORE NY Monday, June 6, 2016

PFOA Blood Test Results Has Hoosick Falls Residents Afraid and Confused

Potentially cancer-causing contaminant PFOS found at Sydney Airport


PFOA blood test results comeback well above average for two people in Hoosick Falls

PFAS News

Oakey residents begin class action against Defence Department over toxic firefighting foam

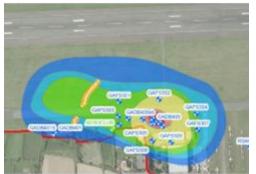
By Elly Bradfield, Kirrin McKechnie and Nick Wiggins
Updated 11 Jul 2017, 4:36am

PHOTO: Lead Plantiff Brad Hudson with his 16-year-old daughter Megan and younger daughter Amber. (ABC News: Elly Bradfield)

About 450 residents are seeking up \$200 million in damages from the Defence Department over the contamination of soil and water by toxic firefighting foam used at the

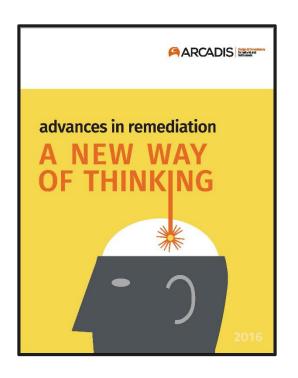
RELATED STORY: Breastfed child records high levels of firefighting foam toxins

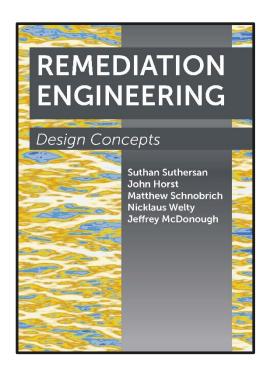
RELATED STORY: Army firefighting chemical exposure levels revised down

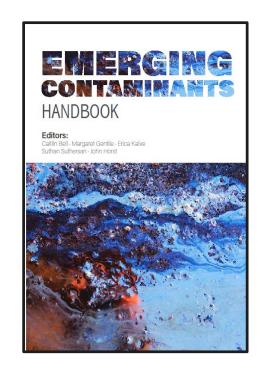


Summary - PFAS Management...

- Better site characterisation
- Assess contaminants comprehensively TOP assay
- Develop intelligent CSM
- Use of detailed site specific quantitative risk assessment
- Consider more sustainable risk management solutions
- Address public risk perception
- Emerging remedial technologies provide ingenious solutions for PFAS







Publications...

Download at:

https://www.concawe.eu/publications/558/40/Environmental-fate-and-effects-of-poly-and-perfluoroalkyl-substances-PFAS-report-no-8-16