

BUND (1)

Clay dykes and clay floors with pebbles

BUND (3)

- Metal sheeting
 - Unprotected sheeting will buckle during bund fire
 - Therefore increase wall height, or
 - Protect metal with earth or Bentonite and covered with cement-stabilized sand

BUND (4)

- Small bunds between 1,000 1,500 m²
- Large bunds more than 1,500 m²
- Intermediate dykes for small spills
- Collection trenches in bunds
- Sloping floor in bund
- Away from surrounding constructions
- Taking prevailing wind direction into account

BUND (5)

- Gross and net bund surface two methods to calculate this value
 - (Length X width bund X height of bund) (combined footprint m² of all tanks except the largest tank)
 - (Length X width bund X height of bund) (combined footprint m² of all tanks)
- Net volume bund = net surface X height on bund wall

BUND (6)

- Required prescriptive containment volume (more options)
- 110% of volume largest tank in bund
- Volume largest tank + 10% of combined other tanks in same bund
- Volume largest tank + volume (foam/cooling water) for one hour fire response for bund fire
- 10% of volume of all tanks in bund
- Volume for performance based approach is based on credible incident scenario

SOME BUND FIRE CAUSES (1)

- Bund fire caused by overflowing storage tank

 API 2350 level category 3 overfill protection independent high/high level interlock- availability/ reliability ≥ 99% → no credible scenario
- 2. Loss of containment tank
 - ageing of tank
 - lack of maintenance
 - corrosion under insulation
 - if tanks are fit for purpose "EEMUA 159"
 - \rightarrow no credible scenario

SOME BUND FIRE CAUSES (2)

- 3. Loss of containment tank caused by low pressure in tank
 - inbreathing capacity meets API 2000 requirements compliance yes/no?
 - if yes \rightarrow no credible scenario
 - failing steam heating coil Inspection/testing/maintenance Coil fit for purpose yes/no?
 - if yes \rightarrow no credible scenario

SOME BUND FIRE CAUSES (3)

4. Rollover Forces on tank

SOME BUND FIRE CAUSES (3)

- Leaking gaskets of flanges Small leakage allowing time to prevent fire when leak is detected (discussed later)
 - credible scenario
 - small scale scenario at start incident
- 6. Product line failure
 - calculate maximum flow using Yellow Book *Methods for the calculation of physical effects* 2.3.5.3 or modelling software
 credible scenario

Vertical cylinder	
$t = \frac{\pi O' \sqrt{h}}{\sqrt{\theta} C_{o'} A_{tr} \sqrt{\rho}}$	

MODELING EFFECTS OF INCIDENTS

- Modeling is part of the <u>preplanning</u> process to determine not only the effects but also to establish the required staff, equipment, and fire fighting material, including water and fire fighting foam
- Use validated software based on a conservative approach
- 2D software is fine for most situations
- 3D software may be required for more complex situations

BUND DESIGN AND TERTIARY CONTAINMENT

Design of bund affects development of incident

- Materials bund walls, bund floor
- Height of bund wall
- Sloping floor
- Provisions to direct spill to tertiary containment
- LEL detection in bund → early detection of spill before the fire occurs and before the spill becomes a pool!

6

$\textbf{MODELING WORST CASE} \leftrightarrow \textbf{PFB SCENARIO}$

10 kW/m ² m 43 81	3 kW/m ² m 89 128				
m 43 81	m 89 128				
43 81	89 128				
81	128				
TED CREDIBLE SCENARIO					
10 kVV/m ²	3 kVV/m ²				
m	m				
36	74				
67	106				
	REDIBLE SC 10 kW/m ² m 36 67				

SPILL FIRE VERSUS POOL FIRE (1)

INCREASE RESPONSE LEL DETECTOR

Combustible gas / vapor	Relative response when sensor is calibrated on pentane	Relative response when sensor is calibrated on propane	Relative response when sensor is calibrated on methane
Hydrogen	2.2	1.7	1.1
Methane	2.0	1.5	1.0
Propane	1.3	1.0	0.65
n-Butane	1.2	0.9	0.6
n-Pentane	1.0	0.75	0.5
n-Hexane	0.9	0.7	0.45
n-Octane	0.8	0.6	0.4
Methanol	2.3	1.75	1.15
Ethanol	1.6	1.2	0.8
Isopropyl Alcohol	1.4	1.05	0.7
Acetone	1.4	1.05	0.7
Ammonia	2.6	2.0	1.3
Toluene	0.7	0.5	0.35
Gasoline (Unleaded)	1.2	0.9	0.6

BUND FIRE LASTS LESS THAN 2 HOURS

- Cooling of tanks: 2 l/min/m² with fixed system flanges can start to leak because of affected bolts or
- Cooling tanks: 10 l/min/m² with fixed system for controlled burn
- Objects / constructions outside the bund exposed to ${\geq}10 \text{ kW/m}^2$
- cool with water, application rate 10 l/min/m² or
- use hydroshields / monitors
- Fireproofing supports & bund wall penetrations

23

FIRE PROOFING SUPPORTS FIRE WATER PIPE

BUND FIRE LASTS >2 HOURS

- Cool tanks in affected bund with water
- application rate 10 l/min/m² with fixed system
- Objects / constructions outside the bund exposed to ${\geq}10 \text{ kW/m}^2$
- cool with water, application rate 10 l/min/m² or
- use hydroshields / monitors
- Fireproofing supports & bund wall penetrations

<image><image><image>

OTHER OBJECTS/CONSTRUCTIONS IN BUND

FIRE FIGHTING OPTIONS BUND FIRE (1)

- Small bunds
 - 1. Fixed system fully automated by detection Fast response – lowest amount of water required
 - 2. Fixed system manually activated Potentially slower response – lowest amount of water required
 - 3. Fixed system fed by fire department Later response – lowest amount of water required
 - Mobile response Late response – higher risk of exposure fire fighters – maximum amount of water required

FIRE FIGHTING STRATEGY BUND FIRE (2)

• Large bund > 1000 – 1,500 m² - MUTUAL AID?

- 1. Fixed system fully automated by detection Fast response – lowest amount of water required
- 2. Fixed system manually activated Potentially slower response – lowest amount of water required
- 3. Fixed system fed by fire department Later response – lowest amount of water required

FIRE FIGHTING STRATEGY BUND FIRE (3)

- Large bund > $1000 1,500 \text{ m}^2$ (continued)
- 4. Partially fixed system combined with mobile response higher risk of exposure fire fighters more water
 - required
- 5. Mobile relay response incident last longer, overall more water required, but flow/hour is lower than with option 6
- 6. Mobile response whole bund Even later response – higher risk of exposure fire fighters – maximum amount of water required

FIRE FIGHTING STRATEGY BUND FIRE (4)

- Large bund > $1000 1,500 \text{ m}^2$ (continued)
- Drainage to tertiary containment spill fire Fast extinguishment of 'small' fire provisions to prevent drainage of burning liquid

