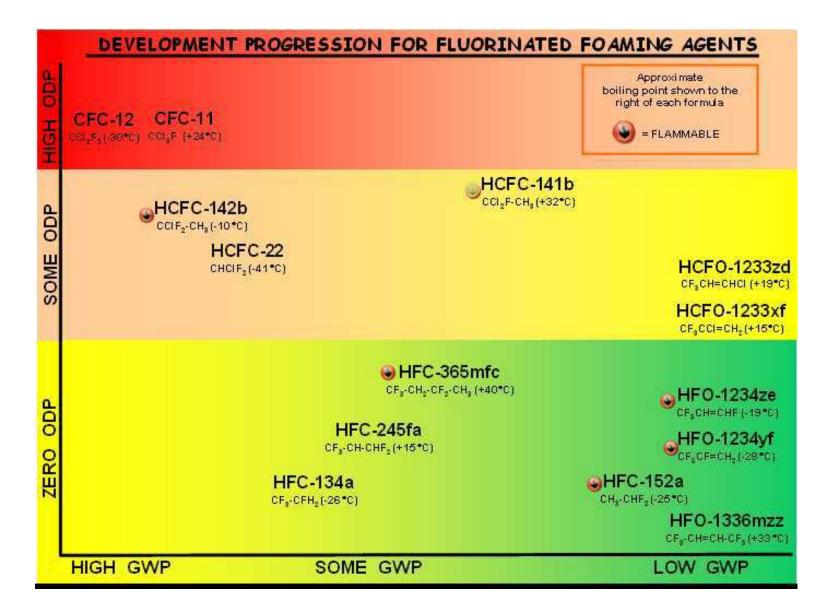


Alternative Technologies for Foam Sector – HFO by DuPont

Ana Noemi Torio – Latin America Business and

Marketing Manager



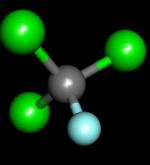
DuPont Next Generation Foaming Agents

- Continually challenged to reduce environmental footprint
 - minimize global warming impact
 - maintain/improve all previous environmental & performance characteristics
 - deliver competitive products in timely manner
- Evaluating hydrofluoro-olefins (HFO) family

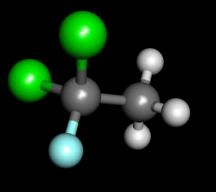
Overview of fluorinated foaming agents

Options for PU foams

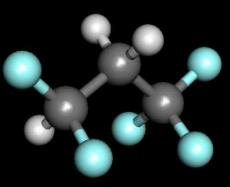
Scouting low GWP hydrofluoro-olefins can present quite a challenge identifying functional candidates among a large number of possibilities


Property	3-Carbon Series					4-Carbon Series		5-Carbon Series		
	HFO 1243zf	HFO 1234yf	HFO 1234ze-E	HFO 1225ye-Z	HCFO 1233xf	HCFO 1233zd-Z	HFO 1345zfc	HFO 1336mzz-Z	HFO 1447fz	HFO 1438mzz-E
Formula	(FaCH=OHz	of to the	CF ₂ CH=OHF	G-G-CHF	07,00-04;	алсннана	G7,G7;OH=OH;	GF_CH+CHCF_	аладаан-сн.	a.oa.c.c.
ODP	None	None	None	None	ODP ¹	ODP ¹	None	None	None	None
GWP	Low	Low	Low	Low	Low	Low	Low	Low	Low	Low
Boiling Point (°C)	-22	-28	-19	-20	14-15	19	5	32	32	29
Molecular Weight	96	114	114	132	131	131	146	164	196	214
Toxicity		Acceptable	Acceptable	Disqualified for toxicity				Acceptable		
Flammable		Yes	Slight	No	No	No		No		

 Executive Summary: Scientific Assessment of Ozone Depletion: 2006, 19 pp. World Meteorological Organization, Geneva, Switzerland, 2007. [Reprinted from Scientific Assessment of Ozone Depletion: 2006, Global Ozone Research and Monitoring Project-Report No. 50, 572 pp., World Meteorological Organization, Geneva, Switzerland, 2007.]



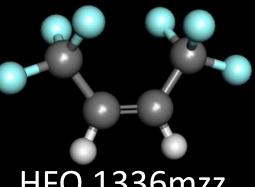
Options for PU foams


Understanding FluoroChemicals

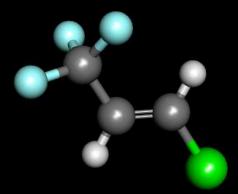
CFC 11

HCFC 141b

HFC 245fa

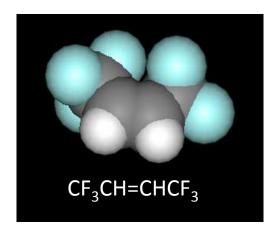

Carbon

Hydrogen

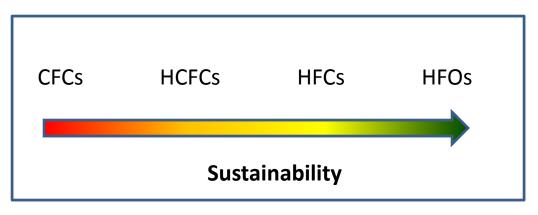

Fluorine

Chlorine

Double Bond


HFO 1336mzz

HCFO 1233zd


Formacel® 1100: A Next Generation Foam Expansion Agent

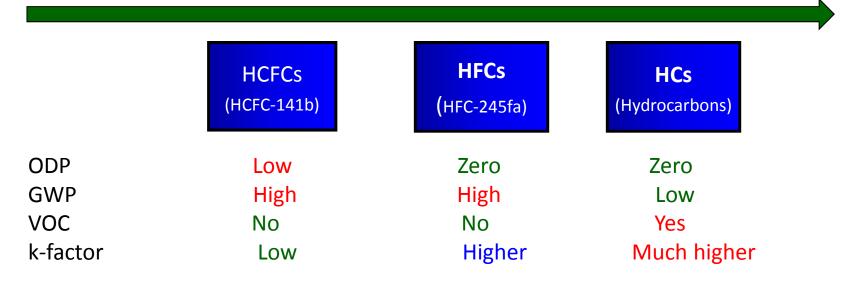
HFO-1336mzz-Z

- Ozone Depletion Potential (ODP) = 0 (no chlorine)
- Global Warming Potential (GWP) 100 yr ITH = 8.9 (NOAA)
- Atmospheric lifetime = 22 days (NOAA)
- Nonflammable (ASTM E 681 at 60 °C & 100 °C)
- Boiling Point = 33 °C
- Vapor Thermal Conductivity k= 10.7 mW/mK @ 25 °C
- AEL^a = 500 ppm 8hr / 12hr
- Maximum Incremental Reactivity (MIR) = $0.04 \text{ g O}_3/\text{g}$

a: DuPont Acceptable Exposure Limits (8-12 hr TWA)

COMPARISON OF FORMACEL® 1100 WITH OTHER ZERO ODP FOAM EXPANSION AGENT OPTIONS

Property	Formacel [®] 1100	HCFC-141b	HFC-245fa	HFC-365mfc	Cyclopentane	Methyl Formate
Molecule Structure	CF ₃ CH=CHCF ₃	CCl ₂ FCH ₃	CF ₃ CH ₂ CHF ₂	CF ₃ CH ₂ CF ₂ CH ₃	(CH ₂) ₅	CH ₃ (HCOO)
Molecular weight	164	117	134	148	70.1	60
Boiling Point (°C)	33	32	15	40	49	32
ODP	0	0.11	0	0	0	0
GWP(100yr ITH)	8.9	725	1030	794	11	<25
VOC	No*	No	Νο	No	Yes	No
Exposure Limits (ppm)	500**	500	300	1000	600	100
Flammability	No	No	No	Yes	Yes	Yes
Vapor Thermal Conductivity @ 25 °C (mW/mK)	10.7	9.7	12.7	10.5	13	10.7


*Expected based on low MIR Value

** DuPont Acceptable Exposure Limits (8-12 hr TWA)

Challenges for the Appliance Industry

More stringent environmental & energy requirements

Challenges - meet the requirements of environmental sustainability and energy efficiency while maintaining the cost effectiveness

Recent Lab study – 1336mzz vs HCFC-141b

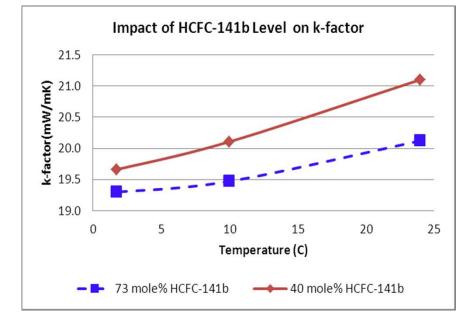
1336mzz - a zero ODP and low GWP version of HCFC-141b

FEA Property	HCFC-141b	1336mzz	
Molecule Structure	CCl ₂ FCH ₃	CF ₃ CH=CHCF ₃	
Chlorine	Yes	No	
ODP	0.11	0	
GWP (100 yr ITH)	725	8.9	
VOC	No	No*	
Exposure Limits (ppm)	500	500	
Flammability	No	No	
Lambda @ 25 °C (mW/mK)	9.7	10.7	
Boiling Point (°C)	32	33	
Molecular Weight	117	164	

* Expected based on low MIR value

HCFC-141b Level Reduction

- Same generic appliance formulation
- Reduced HFC-141b level from 73 mole% to 40 mole%


Formulations	73 mole % HCFC-141b	40 mole % HCFC-141b	
Foam index	1.2	1.2	
Polyol Blend (pbw)	100	100	
Additives (pbw)	9.9	9.9	
Water (pbw)	1.7	3.8	
FEA (pbw)	30	16	
Moles of FEA	0.26	0.14	
Moles of Water	0.09	0.21	
Mole % of FEA	73%	40%	

Impact of HCFC-141b Level Reduction

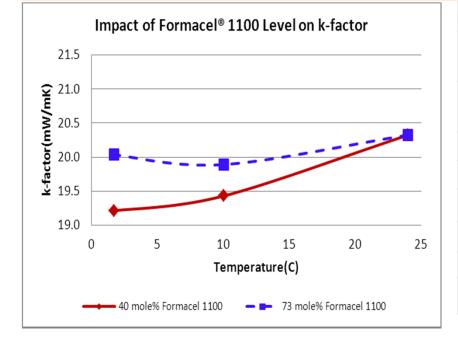
At 40 mole% HCFC141b:

- Reduced FEA usage by 45 wt%
- > Worse k-factor at all temperatures

Initial Foam Properties	73 mole % HCFC-141b	40 mole % HCFC-141b			
Density (kg/m³)	28.8	28.2			
k-factor (mW/mK) at 24 °C	20.1 21.1				
k-factor (mW/mK) at 10 °C	19.5	20.1			
k-factor (mW/mK) at 1.7 °C	19.3	19.7			
Relative k-factor changes					
k-factor at 24 °C	Control	4.9%			
k-factor at 10 °C	Control	3.3%			
k-factor at 1.7 °C	Control	1.9%			
Relative FEA changes					
FEA (weight)	Control	-45%			

Formacel® 1100 Level Reduction

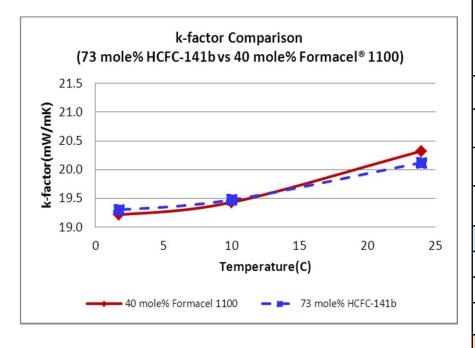
- Generic appliance formulation
- Formacel® 1100 level reduction from 73 mole% to 40 mole%


Formulations	73 mole % Formacel [®] 1100	40 mole % Formacel [®] 1100
Foam index	1.2	1.2
Polyol Blend (pbw)	100	100
Additives (pbw)	9.9	9.9
Water (pbw)	1.7	3.8
FEA (pbw)	42	23
Moles of FEA	0.26	0.14
Moles of Water	0.09	0.21
Mole % of FEA	73%	40%

Impact of Formacel® 1100 Level Reduction

At 40 mole% Formacel® 1100:

- Reduced FEA usage by 45 wt%
- Improved k-factor at 10C° and 1.7C°
- > No impact on k-factor at 24C°



Initial Foam Properties	73 mole % Formacel [®] 1100	40 mole % Formacel [®] 1100			
Density(kg/m³)	27.0	28.5			
k-factor(mW/mK) at 24 °C	20.3	20.3			
k-factor (mW/mK) at 10 °C	19.9	19.4			
k-factor (mW/mK) at 1.7 °C	20.0	19.2			
Relative k-factor changes					
k-factor at 24 °C	Control	0.0%			
k-factor at 10 °C	Control	-2.3%			
k-factor at 1.7 °C	Control	-4.1%			
Relative FEA changes					
FEA (weight)	Control	-45%			

Comparison of Formacel® 1100 at 40 mole% vs HCFC-141b at 73 mole%

- Reduced Formacel® 1100 usage by 23 wt%
- Equivalent k-factor performance at all temperatures

Initial Foam Properties	73 mole % HCFC-141b	40 mole % Formacel [®] 1100			
Density (kg/m³)	28.8	28.5			
k-factor (mW/mK) at 24 °C	20.1	20.3			
k-factor (mW/mK) at 10 °C	19.5	19.4			
k-factor (mW/mK) at 1.7 °C	19.3	19.2			
Relative k-factors					
k-factor at 24 °C	Control	1.0%			
k-factor at 10 °C	Control	-0.2%			
k-factor at 1.7 °C	Control	-0.4%			
Relative FEA Changes					
FEA (weight)	Control	- 23 %			

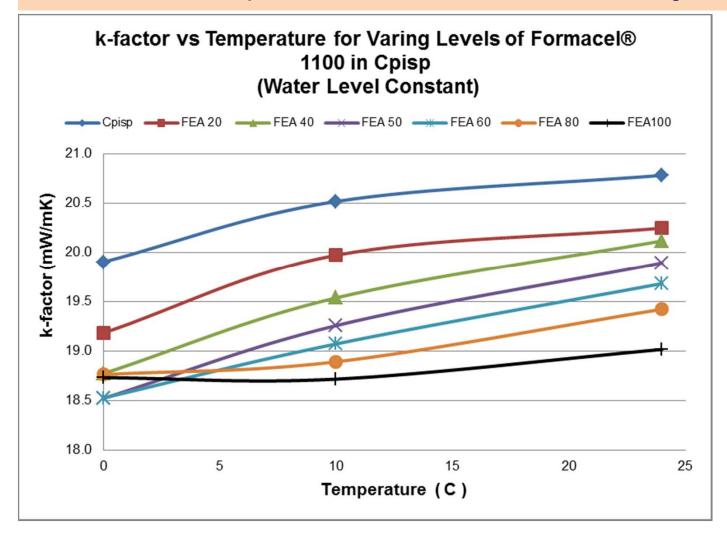
Experimental Work

- Bench scale experiments by DuPont [1, 2]
 - 1336mzz blends improved k-factor
 - > 1336mzz at reduced level provided equivalent or improved k-factor performance
- High pressure machine experiments by Dow Chemical [3]
 - 1336mzz was dropped into an appliance formulation using cyclo-/iso-pentane (Cpisp) blend
 - > The molar ratio of 1336mzz was varied from 100% to 0% as designated as

FEA100, FEA80, FEA60, FEA50, FEA40, FEA20 and FEA zero (100% Cpisp)

Several performance advantages were identified

^{1.} Loh, G., Creazzo, J., Robin, M.L., "Further Development of FEA-1100 – a Zero ODP and Low GWP Foam Expansion Agent", Proceedings of 2011 Blowing Agents and Foaming Processes, Dusseldorf, Germany


^{2.} Loh, G., Creazzo, J., Robin, M.L., "Formacel® 1100: A Zero ODP and Low GWP Foam Expansion Agent", Proceedings of 2012 Polyurethanes Technical Conference, Atlanta, GA, USA

^{3.} Rose, M., Altoe, P., Parenti, V., Riccio, R., "Assessment of Formacel® 1100 (FORMACEL®) Blowing Agent in Rigid Polyurethane Insulating Foams for Domestic Appliance", Proceedings of 2012 Polyurethane Technical Conference, Atlanta, GA, USA

k-factors

- Reduced k-factor at various Formacel® 1100 levels
- Potential k-factor improvement with reduced Formacel® 1100 usage

Summary of options for PU foam

- Established HFC's and blends as alternatives for HCFCs available
 - Based on 245fa or 365mfc/227ea
 - **FO 1336mzz for high performance applications**
- Future
 - ≻ HFO's
 - like e.g. 1336mzz
 - Low GWP
 - > No ODP
 - > paradigm change: reduced environmental footprint and improved performance
 - > improved performance for HC blown foams
 - > 1336mzz capacities in ramp up status

Acknowledgement:

Whirlpool Corporation Dow Brazil Sudeste Industrial Air Products and Chemicals Inc. Japanese Urethane Foam Association

Disclaimer

The information set forth herein is furnished free of charge and based on technical data that DuPont believes to be reliable. It is intended for use by persons having technical skill, at their own risk. Since conditions of use are outside our control, we make no warranties, expressed or implied and assume no liability in connection with any use of this information. Nothing herein is to be taken as a license to operate under, or a recommendation to infringe any patents or patent applications.

The miracles of science™