
#### **Ask The Expert Webinar Series**



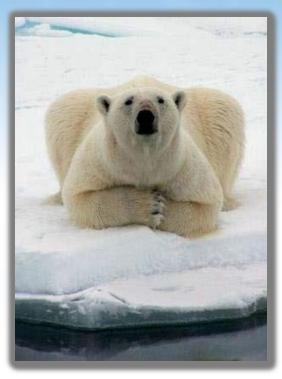
## The Analysis of Polyfluorinated Alkyl Substances (PFAS) Including PFOS and PFOA

**Karla Buechler – Corporate Technical Director** 





#### **PFAS - Outline**


#### Introduction to PFASs

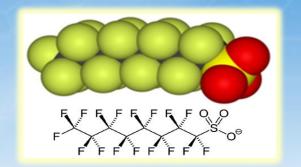
What are PFASs?
Nomenclature/Chemistry
Sources, Timeline, Formation
Exposure, Toxicity and Risk
Regulatory Review

#### **Analytical Best Practices**

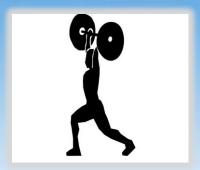
Analytical Methods review
Why so much variability?
How do we reduce variability?
New DAI Capability
Future Concerns – TOP Assay
Capabilities and Questions?











## **Briefly - What are PFASs?**



Class of synthetic compounds containing thousands of chemicals formed from **carbon** chains with **fluorine** attached to these chains.



The **C-F** bond is the shortest and the strongest bond in nature.



PFOS and PFOA are fully fluorinated and the most common perfluorinated chemicals (PFCs).

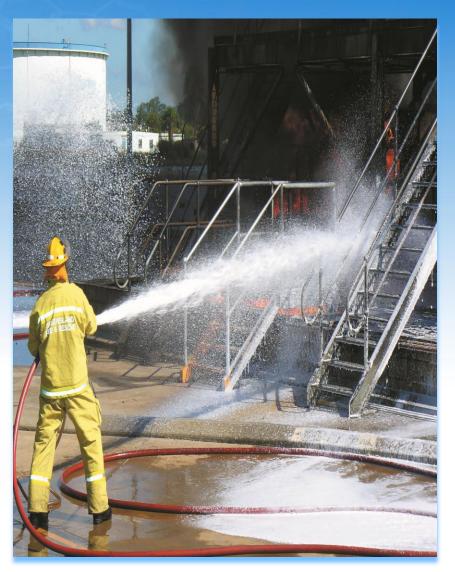


Persistent and resistant to degradation Found in soil, air and groundwater..



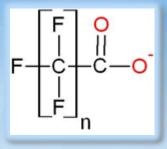
#### Nomenclature




**PFAS** – Broad term – completely and incompletely fluorinated

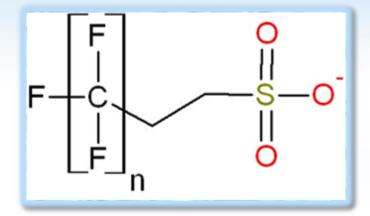
PFC – Subset of PFAS completely fluorinated compounds. PFOS and PFOA are PFCs (no hydrogen atoms)

**PFAAs** – Perfluoroalkyl acids – 2 classes PFCAs and PFSAs


**AFFF** – Aqueous Film Forming Foam –mixture of PFCAs, PFSAs, and PFAS precursors

Fluorochemicals and telomers










Perfluoroalkyl Carboxylate

Perfluoroalkyl Sulfonate



**Fluorotelomer Sulfonates** 

Perfluoroalkyl Sulfonamido Amines

Perfluoroalkyl
Sulfonamido acetic acid
amine

### **Primary Sources – Point or Direct**



- Released in large quantities from primary manufacturing facilities
- Secondary Manufacturing incorporation of PFC raw materials into industrial and consumer products
- The use of AFFFs to fight fires is a direct pathway to the environment – (Connection to DoD)





## Secondary Sources - Indirect



- Commercial and consumer products have a finite lifetime.
  - Dispose to landfills
  - > WWTP
  - Air emissions
- Trace chemistry transformation mostly degradation byproducts (TOP Assay)





## **PFAS – Historical Timeline**



| When               | What Happened                                                                                               |  |  |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1950s              | 3M was first to produce PFOS and higher homologues                                                          |  |  |  |  |
| 1969               | AFFF was patented as a method for extinguishing liquid hydrocarbon fires and implemented by the DoD in 1969 |  |  |  |  |
| 1980s <b>–</b> 90s | First LCMSMS instruments with ppm to ppb detection capabilities                                             |  |  |  |  |
| 1990s              | A handful of commercial labs developed propriety methods to meet client needs                               |  |  |  |  |
| 2002               | Global manufacturers began to replace LC PFCs with SC PFCs                                                  |  |  |  |  |
| 2005               | \$235Mil class action lawsuit brought by citizens against DuPont over PFC contamination in the Ohio river   |  |  |  |  |
| 2000s              | LCMSMS technology advancements lead to ppt and ppq DLs.                                                     |  |  |  |  |
| 2008, 09           | EPA published Method 537 and Method 537 Version 1.1                                                         |  |  |  |  |
| 2011               | EPA published Draft Procedure for Analysis of PFCA and PFSA in Sewage Sludge and Biosolids by HPLC/MS/MS    |  |  |  |  |
| 2012               | UCMR3 was signed by the EPA administrator                                                                   |  |  |  |  |
| 2014               | ASTM Published Method D7968-14 for PFC in Soil by LC/MS/MS                                                  |  |  |  |  |
| 2015               | ASTM Published Method D7979-15 for PFC in Water, Sludge, Influent, Effluent and WW by LC/MS/MS              |  |  |  |  |

## **PFAS Formation by ECF**



ECF Reaction: Process yields a mixture of B/L isomers



➤ Telomer Reaction: Process yields 100% linear isomers (Synthesis of building blocks leading to fluorotelomer alcohols)



# Environmental Exposure Pathways Oliaei, Environ Pollut Res. (2013): 1977-1992





#### **Exposure, Toxicity and Risk**







- Major source of non-occupational exposure to humans is from food and air (predominately fish consumption)
- Human and wildlife exposure can continue even though the chemicals are no longer in use, due to persistence.
- PFOS and PFOA have half-lives in humans ranging from 2 to 9 years, depending on the study.
- PFOA associated with liver, pancreatic, testicular, and mammary gland tumors in laboratory animals. PFOS causes liver and thyroid cancer in rats
- PFOA and PFOS are associated with cancers in humans. Pathways are being studied.

## PFAS – Regulatory Timeline

| When     | Who    | What Happened                                                                                  |
|----------|--------|------------------------------------------------------------------------------------------------|
| 1980s    | EU     | Groundwater directive to prevent discharge of PFOS                                             |
| 2002     | US EPA | Initiated voluntary phase out of PFOS                                                          |
| 2002     | 3M     | Discontinued making PFOS (7 other makers complied)                                             |
| 2006     | US EPA | Announced 2010 (95%)/15(100%) PFOA Stewardship Program                                         |
| 2008     | Canada | Regulated and prohibited PFOS imports to Canada                                                |
| 2009     | UN     | Stockholm Convention - adds PFOS to Annex B                                                    |
| 2010     | US EPA | 2010 PFOA Stewardship program - must reduce PFOA use by 95%                                    |
| 2013     | Canada | Use of AFFF with PFOS > 0.5ppm are prohibited                                                  |
| 2013     | DuPont | Makes a statement that it does not make, buy or use PFOS                                       |
| 2015     | US EPA | Must 100% eliminate the use of PFOA by December 31,2015                                        |
| May 2016 | US EPA | PFOS and PFOA life time health limits reduced to 70 ppt each or the total if both are present. |

Input from Dr. Jimmy Seow Dept. of Environment and Conservation Western Australia.

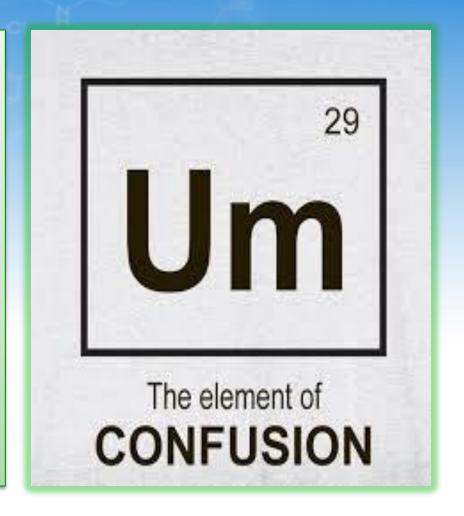






## What's Up in New Jersey?




| State          | PFOA<br>ppt | PFOS<br>ppt | Comments              | Source | Year |
|----------------|-------------|-------------|-----------------------|--------|------|
| Alabama        | 400         | 200         |                       | EPA    | 2009 |
| Alaska         | 3100        | 1300        |                       | ADEC   | 2013 |
| California     | 400         | 200         |                       | OEHHA  | 2010 |
| Georgia        | 400         | 200         |                       | EPD    | 2009 |
| Illinois       | 400         | 200         |                       |        |      |
| Maine          | 60          | 100         |                       | ME DEP | 2014 |
| Michigan       | 42          | 11          |                       | MI DEQ | 2013 |
| Minnesota      | 300         | 300         | 700 PFBA              | MDH    | 2009 |
| New Jersey*    | 14          | 14          |                       | NJDEP  | 2016 |
| North Carolina | 1000        | NA          |                       | NCSAB  | 2009 |
| Ohio           | 400         | 200         |                       | EPA    | 2009 |
| Oregon         | 24000       | 300000      | PFHpA, PFNA,<br>PFOSA |        |      |
| Pennsylvania   | TBD         | TBD         |                       | PA DEP | 2015 |
| Texas          | 100         | 100         | PCLs for 16 PFCs      |        | 2013 |
| Vermont        | 20          | TBD         |                       | VT DOH | 2016 |
| Washington     | NA          | TBD         | Listed PFOS as PBT    |        |      |
| West Virginia  | 400         | 200         |                       | EPA    | 2009 |



## PFAS Analytical Methods-Best Practices

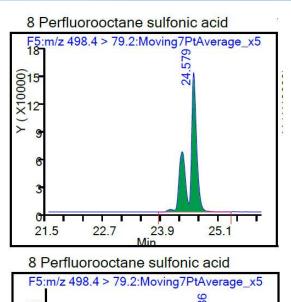


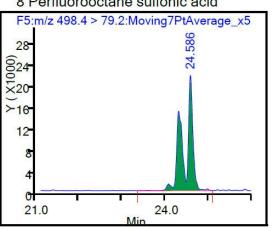
- Manufacturer's methods were adopted by the environmental industry – SW-846 Method 8321
- EPA expanded manufacturer's method for drinking water-Method 537
- EPA expanded Method 537 for biosolids and sewage matrices – Draft EPA Method
- ASTM published D7968-14 for soils
- ASTM published D7979-15 for a wide variety of aqueous matrices

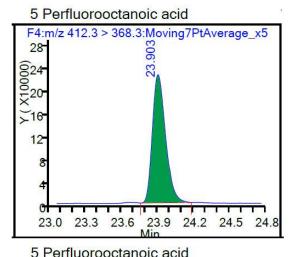


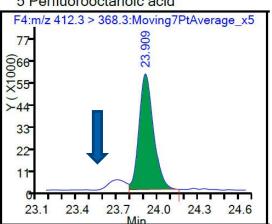
# Why so much method variability? (May 2016)




- Inconsistent quantitation of branched and linear isomers
- Absence of multi-lab validated methods
- Limited certification programs
- Differences in extraction efficiencies analyte sorbent dependent
- External, internal and isotope dilution quantitation schemes
- Lack of proven commercially available PT samples
- Use of isotopically labeled extraction surrogates
- Lack of commercially available standard materials and true second sources
- Target analyte losses during filtration
- Absence of demonstrated cleanup techniques for complex matrices
- Wide variety of container types and holding times


## **Show Branched and Linear error in PFOS and PFOA**





Standard

Sample









0.99 vs 1.20 ng/ml

## PT variability May 2016



- What is the pH?
- Is there headspace in an aqueous container?
- Is the spiking standard stored in methanol?
- What kind of containers and lids are used?
- Does the spiking container have branched and linear isomers?
- Was water PFAS free?
- Were the spiking levels verified by third party?
- Were the acceptance levels verified by third party?



## Study Results - NMI PT



- > 24 labs submitted results 9 Passed
- TestAmerica passed water, soil and fish tissue samples

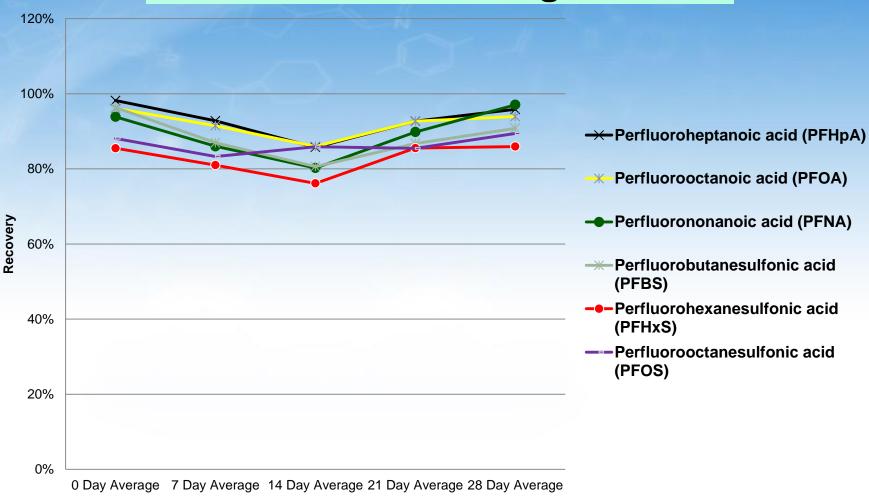


| Sample  | Analyte | Sac Lab | Expected |
|---------|---------|---------|----------|
| Water A | PFOA    | 7.91    | 7.90     |
|         | PFOS    | 3.23    | 3.00     |
| Water B | PFOA    | 9.01    | 10.8     |
|         | PFOS    | 6.81    | 6.50     |
| Soil A  | PFOA    | 7.00    | 5.83     |
|         | PFOS    | 290     | 262      |
| Soil B  | PFOA    | 14.2    | 12.0     |
|         | PFOS    | 23.5    | 22.0     |
| Fish A  | PFOA    | ND      | ND       |
|         | PFOS    | 19.9    | 20.6     |
| Fish B  | PFOA    | 51.4    | 50.5     |
|         | PFOS    | 49.2    | 53.7     |

# Sample Collection and Holding Time Studies



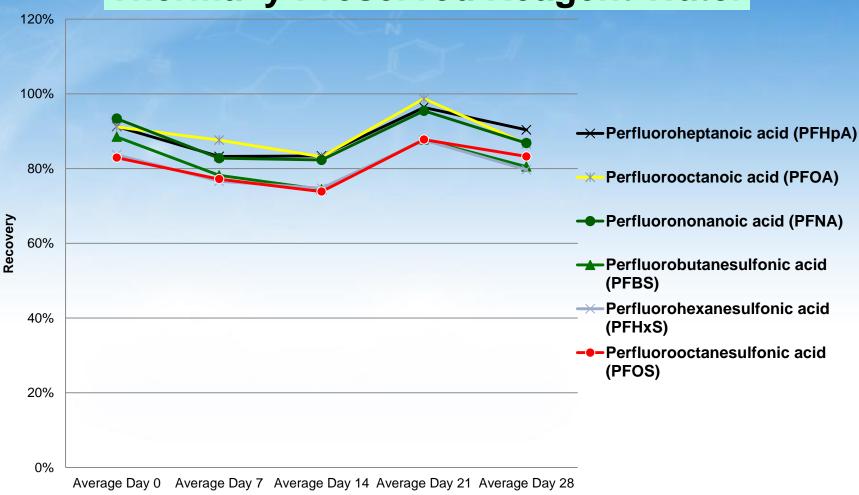
"Confusion and clutter are the failure of design, not the attributes of information."




- Samples should be collected in HDPE bottles fitted with unlined (no Teflon) polyethylene screw caps.
- In addition, the sampler should avoid contact with fluoropolymers, aluminum foil, and food wrappers.
- Samples should not be field filtered.
- Samples must be shipped chilled
- Limited HT studies

## **Holding Time Study Data**

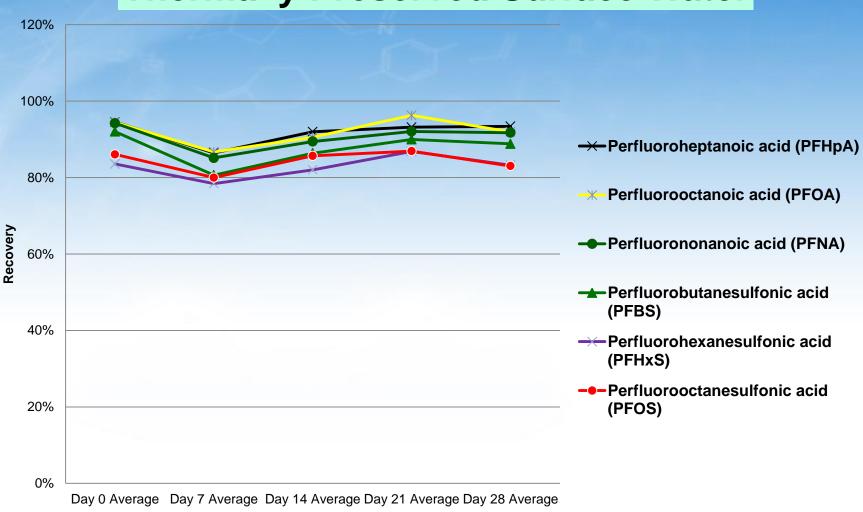



#### **Trizma Preserved Reagent Water**



### **More HT Data**




#### **Thermally Preserved Reagent Water**



### The End of HT Data



#### **Thermally Preserved Surface Water**



# How can we mitigate analytical variability?

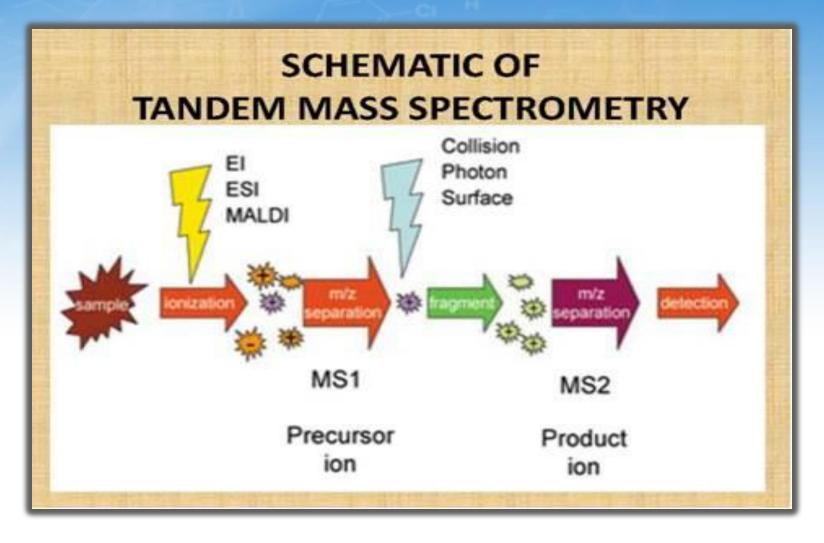


- Apply tandem mass spectrometry technology
- Implement an isotope dilution quantitation scheme
- Compensate for losses with matrix recovery correction
- Share our knowledge
- Invest resources in multilab validation



## Advantages of LC/MS/MS

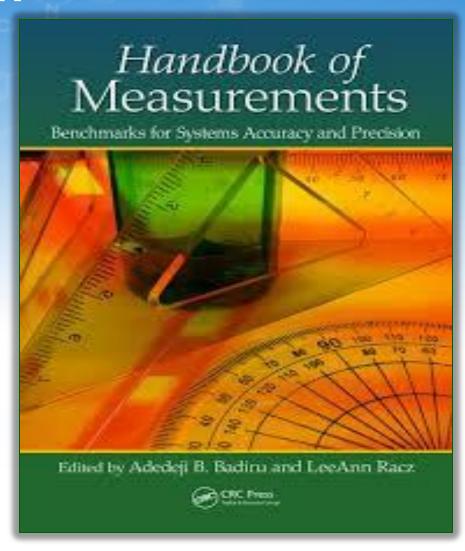





**Specificity/Selectivity -** A target analyte's MRM response is highly characteristic of its identity. LC/MS/MS analyses are more than **100 times better at filtering interferences** than conventional instrumentation

Sensitivity - Softer ionization than Electron Impact (EI) GCMS – allows for **thermally labile** analytes to be detected **Ruggedness** – improved reproducibility for a wide variety of parameters and matrices and improved productivity

## LC/MS/MS – Electrospray lonization






## Advantages of Isotope Dilution Quantitation



- Most accurate and precise calibration method available
- Partial loss of analyte during preparation is compensated for since chemical interferences are not an issue
- Allows for matrix recovery correction – what affects the native analyte will equally affect the isotope
- Correction for signal drift
- Improved qualitative identification – RT shifts



## Extraction by Method 537 Mod – Aqueous and Solid Matrices



1. Sample collection and shipment to the lab chilled in HDPE bottles with DW preservative if appropriate.



2. Measure 250 mls of sample and spike with isotopically labeled target analytes.



3. Prepare SPE, load sample and elute PFAS off the cartridge with an ammonium hydroxide/methanol solution.

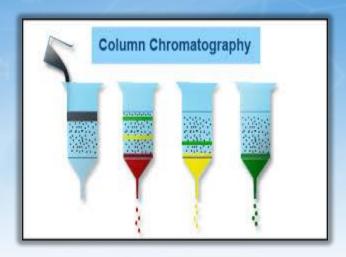
1. Sample collection and shipment to the lab chilled in HDPE bottles.

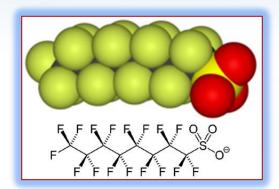


2. Measure 5 g of sample and spike with isotopically labeled target analytes. Extract with KOH/MeOH. Shake for 3 hours and sonicate for 12 hours



3. Prepare SPE, load sample and elute PFAS off the cartridge with an ammonium hydroxide/methanol solution.





Move on to the Analysis



## Analysis by Method 537 Mod – Aqueous and Solid Matrices









4. Concentrate PFAS extract to dryness. Add methanol to each, soak and vortex to mix well. Then add water to final composition of 80:20 methanol:water



5. Analyze by LCMSMS using a C18 column with a gradient program using 20 mM ammonium acetate/water and methanol. Mass spec is operated in (ESI) negative ion mode.



6. Process and review data. Assess QC elements, narrate anomalies and send report to client.

| Compound Name                                                         | Abbr. CAS #                        | Method              |     |                             |       |        |        |
|-----------------------------------------------------------------------|------------------------------------|---------------------|-----|-----------------------------|-------|--------|--------|
| Compound Nume                                                         | ADDI. CAO#                         |                     | 537 | Aqueous (ng/L) Soil (ug/Kg) |       | ıg/Kg) |        |
| Perfluoroalkylcarboxylic acids (PFCAs)                                |                                    |                     |     | RL                          | MDL   | RL     | MDL    |
| Perfluoro-n-butanoic acid                                             | PFBA                               | 375-22-4            |     | 2.00                        | 0.458 | 0.200  | 0.0650 |
| Perfluoro-n-pentanoic acid                                            | PFPeA                              | 2706-90-3           |     | 2.00                        | 0.989 | 0.200  | 0.1310 |
| Perfluoro-n-hexanoic acid                                             | PFHxA                              | 307-24-4            | Y   | 2.00                        | 0.786 | 0.200  | 0.0710 |
| Perfluoro-n-heptanoic acid                                            | PFHpA                              | 375-85-9            | Y   | 2.00                        | 0.802 | 0.200  | 0.0880 |
| Perfluoro-n-octanoic acid                                             | PFOA                               | 335-67-1            | Y   | 2.00                        | 0.748 | 0.200  | 0.102  |
| Perfluoro-n-nonanoic acid                                             | PFNA                               | 375-95-1            | Y   | 2.00                        | 0.654 | 0.200  | 0.0830 |
| Perfluoro-n-decanoic acid                                             | PFDA                               | 335-76-2            | Y   | 2.00                        | 0.440 | 0.200  | 0.0570 |
| Perfluoro-n-undecanoic acid                                           | PFUnA                              | 2058-94-8           | Υ   | 2.00                        | 0.748 | 0.200  | 0.106  |
| Perfluoro-n-dodecanoic acid                                           | PFDoA                              | 307-55-1            | Υ   | 2.00                        | 0.584 | 0.200  | 0.121  |
| Perfluoro-n-tridecanoic acid                                          | PFTrDA                             | 72629-94-8          | Υ   | 2.00                        | 0.551 | 0.200  | 0.0920 |
| Perfluoro-n-tetradecanoic acid                                        | PFTeDA                             | 376-06-7            | Y   | 2.00                        | 0.199 | 0.200  | 0.0580 |
| Perfluoro-n-hexadecanoic acid                                         | PFHxDA                             | 67905-19-5          |     | 2.00                        | 0.123 | 0.200  | 0.0520 |
| Perfluoro-n-octandecanoic acid                                        | PFODA                              | 16517-11-6          |     | 2.00                        | 0.672 | 0.200  | 0.100  |
| Perfluorinated sulfonic acids (PFSAs)                                 |                                    |                     |     |                             |       |        |        |
| Perfluoro-1-butanesulfonic acid                                       | PFBS                               | 375-73-5            | Y   | 2.00                        | 0.918 | 0.200  | 0.103  |
| Perfluoro-1-hexanesulfonic acid                                       | PFHxS                              | 355-46-4            | Y   | 2.00                        | 0.870 | 0.200  | 0.118  |
| Perfluoro-1-heptanesulfonic acid                                      | PFHpS                              | 375-92-8            |     | 2.00                        | 0.713 | 0.200  | 0.118  |
| Perfluoro-1-octanesulfonic acid                                       | PFOS                               | 1763-23-1           | Y   | 2.00                        | 1.28  | 0.200  | 0.126  |
| Perfluoro-1-decanesulfonic acid                                       | PFDS                               | 335-77-3            |     | 2.00                        | 1.21  | 0.200  | 0.0720 |
| Perfluorinated sulfonamides (FOSA)                                    |                                    |                     |     |                             |       |        |        |
| N-ethylperfluoro-1-octanesulfonamide                                  | EtFOSA                             | 4151-50-2           |     | 100                         | 13.0  | 20.0   | 2.53   |
| N-methylperfluoro-1-octansulfonamide                                  | MeFOSA                             | 31506-32-8          |     | 100                         | 22.4  | 20.0   | 3.36   |
| Perfluorinated sulfonamidoacetic acids (FOSAA)                        |                                    |                     |     |                             |       |        |        |
| N-ethylperfluoro-1-octanesulfonamidoacetic acid                       | EtFOSAA                            | 2991-50-6           | Y   | 20.0                        | 5.02  | 2.00   | 0.390  |
| N-methylperfluoro-1-octanesulfonamidoacetic acid                      | MeFOSAA                            | 2355-31-9           | Y   | 20.0                        | 5.64  | 2.00   | 1.30   |
| Perfluoroalkylsulfonamidoethanols (PFOSEs)                            |                                    |                     |     |                             |       |        |        |
| 2-(N-ethylperfluoro-1-octanesulfonamido)-ethanol                      | Et-FOSE<br>(N-Et-FOSE)             | 1691-99-2           |     | 40.0                        | 7.50  | 4.00   | 0.750  |
| 2-(N-methylperfluoro-1-octanesulfonamido)-ethanol                     | Me-FOSE<br>(N-Me-FOSE)             | 24448-09-7          |     | 40.0                        | 7.30  | 4.00   | 0.750  |
| Fluorotelomer sulfonates (FTS)                                        |                                    |                     |     |                             |       |        |        |
| 1H,1H,2H,2H-perfluorooctane sulfonate (6:2)                           | 6:2 FTS                            | 27619-97-2          |     | 20.0                        | 3.82  | 2.00   | 0.390  |
| Copyright © 2016 Test/<br>1H,1H,2H,2H-perfluorodecane sulfonate (8:2) | merica. All rights rese<br>8:2 FTS | rved.<br>39108-34-4 |     | 20.0                        | 4.04  | 2.00   | 0.680  |

#### Method 537M - DAI



#### What is it?

 Dilute a water sample with methanol and inject a large volume onto a modified UPLC

#### What are the advantages?

- Simplicity reduced sample manipulation
- Reduced sample volume (5 mls)
- Speed, reduced TAT
- Increased capacity
- Reduced risk of laboratory background artifacts

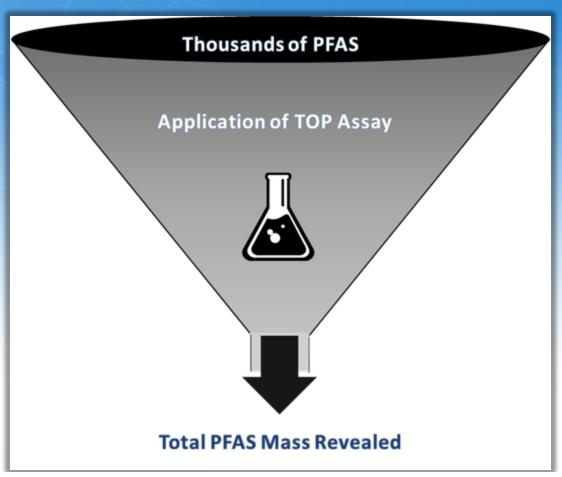


#### **Future Concerns**

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

- The TOP assay and PIGE demonstrate the mass balance is not closed
- Analyte lists are growing for discrete methods, may lead to forensics.
- LC PFASs are being replaced by SC PFASs and little is know about the toxicity
- On-going method confusion must be improved
- On-going data variability must be improved

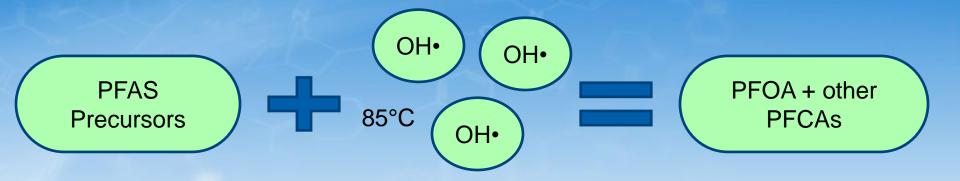





## What is the TOP Assay?



- A new PFAS sample preparation technique
- Pretty simple chemistry
- Used in conjunction with 537M (Not 537) – combines pre and post oxidation results
- Indicates presence of unidentified PFAS in water, sediment and soil




Houtz, Erika, and David L. Sedlak. 2012. Oxidative conversion as a means of detecting precursors to perfluoroalkyl acids in urban runoff. *Environmental Science and Technology* 46: 9342-9349

Image provided by Arcadis 2016

## **TOP – How Does it Work?**







#### What Do the Results Mean?



#### TOP Assay measures total PFCA

| Precursor | Pre - TOP | Post - TOP | % Recovery |
|-----------|-----------|------------|------------|
| FOSA      | 32.68     | ND         | 0%         |
| MeFOSAA   | 19.38     | ND         | 0%         |
| EtFOSAA   | 18.83     | ND         | 0%         |
| 6:2 FTS   | 31.69     | ND         | 0%         |
| 8:2 FTS   | 26.37     | ND         | 0%         |
| PFCA      | Pre – TOP | Post - TOP | Total      |
| PFBA      | 24.94     | 27.16      | 109%       |
| PFPeA     | 23.38     | 28.55      | 122%       |
| PFHxA     | 26.49     | 34.87      | 132%       |
| PFHpA     | 23.10     | 25.14      | 109%       |
| PFOA      | 23.72     | 58.71      | 248%       |
|           | Total 122 | Total 174  |            |

### **TestAmerica Capabilities**





- TestAmerica Sacramento is EPA approved for Method 537 in drinking water
- Sacramento and Denver both are NELAP and DoD ELAP approved for Method 537M.
- 7 LCMSMS instruments capable of PFAS testing
- Sacramento has successfully implemented the TOP Assay

#### **Ask The Expert Webinar Series**



#### Thank you for attending

## The Analysis of Polyfluorinated Alkyl Substances (PFAS) Including PFOS and PFOA

To submit a question, type it into the Questions panel in the GoToWebinar toolbar and click Send.

If you have any additional questions for today's presenter you may submit them directly to: <a href="http://testamericainc.com/services-we-offer/ask-the-expert/karla-buechler/">http://testamericainc.com/services-we-offer/ask-the-expert/karla-buechler/</a>

Please be sure to visit the Ask the Expert Webinar Series web page for other scheduled webinars at: <a href="http://testamericainc.com/services-we-offer/webinars/upcoming-webinars/">http://testamericainc.com/services-we-offer/webinars/upcoming-webinars/</a>

To view a recording of this webinar session, please contact: info@testamericawebinars.com