

Independent Fire Hazard Management Consultants

Industry standards

Liquefied Gas Fire Hazard Management

standards ntation specification	Fire system int assurance	Fire system integrity assurance	
procedures	Report No. 6.85/204 June 2000		
		OGP	

Initially at Gold Command Escorted to Bronze

Foam – minimum requirements Foam sources Foam application

Large Atmospheric Storage Tank Fires

An industry consortium of international oil companies reviewing risks associated with storage tank fires

Objectives of original study

- Determine current levels of risk
- Establish Design & Operational Practice & make knowledge available throughout industry
- Establish techniques to determine site- specific levels of risk and identify appropriate & cost-effective risk reduction measures

Objectives of update study

To continue LASTFIRE's role as the established recognised international oil companies forum on best practices of **Fire Hazard Management** of Storage Tanks

Scope

Review of incidents Update database on open top floaters Extend database to fixed roof and internal floaters Assess current practices and latest developments in risk reduction measures Detection systems Foam systems Major incident response systems Tank / seal constructions Practical research Boilovers Vapour measurement in internal floating roof tanks Become industry focal point / forum

Tank Fire Foam Application Options

Tank FireFoam Application Options

Do you want to put it out?

Full Surface Fire Response

Pump-out and Controlled Burndown

Pump-out and Controlled Burndown

Example

Shell, New Jersey

Note: Cooling monitors only

Note tank height!!!

Pump-out and Controlled Burndown Considerations • Smoke

Pump-out and Controlled Burndown Considerations

- Smoke
- Public Image
- Incident Duration
- Pump out capability
 - Spare tankage
 - Flow rates
- Exposure Protection
 - Requirements vary with time
- Boilover Potential
- Prior Acceptance by Authorities

Environmental Impact of Controlled Burns

R&D Technical Report P388

Tank Fire Foam Application Options

Systems

Full Surface Fire Response

Full Surface Foam System

Full Surface Foam System

Example

•OMV, Austria

Full Surface Foam System Considerations •Manning Exposure Minimised Response Time Minimised

- •Cost
- System Maintenance / Testing
 Reduced Flow Rates
 Foam Flow Issues if Tank > 60m

Full Surface Fire Response

Monitor Application

Monitor Attack

Small tanks (NFPA <~10m) Can use handlines

Monitor Attack

Examples

Sunoco, Sarnia, Canada

•Orion, USA

Monitor attack started

Skyvision

Norco Fire, June 2001

83m diameter Gasoline with MTBE Fire

General industry trend: Response shifting to large capacity monitors

BIG FOOT 2

A designed, well engineered package Not just and item of equipment!

Typical Russian equipment

Tank Fire Exercise and Demonstration

First involvement?

What did I think about the plan to ignite a 40m diameter tank in the middle of an operating refinery and adjacent to other "live" tanks?

"I don't know whether you are brave or crazy"

Test Parameters

Tank Diameter 42 m Surface Area 1385 m² ~10,000 lpm **Total application rate 7.2 lpm/m²** Solution rate 10 lpm/m^2 **EN*** rate for tank fire 60 mins **EN*** Run time *Draft and dependent on foam quality

Comparison with real incident

	Test	Incident
Preburn	2-3mins	~hours
		Distortion
Fuel Depth	~30mm	~metres
Response Time	Immediate	~hours
Fuel	Diesel	Crude?
Care required	with drawing	too many
direc	t conclusions	

However... Valuable lessons to learn!! Deployment logistics Large water flow requirement Foam flow (100 lpm if 1%) Radiant heat

However... Valuable lessons to learn!! **Deployment logistics** Large water flow requirement Foam flow (100 lpm if 1%) **Radiant heat** Monitor throw/height **Smoke plume** It is possible!!! **Good planning Good equipment Good training Competent personnel** Crude? Maybe time dependent

Monitor Attack

Scenes from commissioning trials

Monitor Application Height is important

Beware of range claims!

- Tank Size
 - NFPA Standards suggest 20m max (EN will go to 60m+)
 - Much more possible in practice
- Manning Levels
 - Large tank incidents involve >100 people
- Stream Range / Height
 - Bund access may be required
 - Wind direction / strength

Slide 1 of 2

- Tank Size
 - NFPA Standards suggest 20m max (EN will go to 60m+)
 - Much more possible in practice
- Manning Levels
 - Large tank incidents involve >100 people
- Stream Range / Height
 - Bund access may be required
- Wind direction / strength
 Logistics
 - Foam supply (1800 lpm for 60000 monitor)
 - Water supply

Slide 1 of 2

Foam Losses Up to 60%

Slide 2 of 2